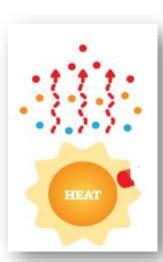
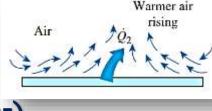
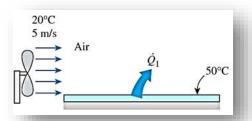
Convection Heat Transfer

and Applications in Electronics Equipment

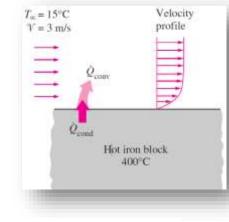

Mr.S.Arunkumar

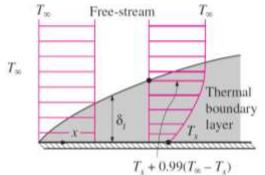

AP/Mech

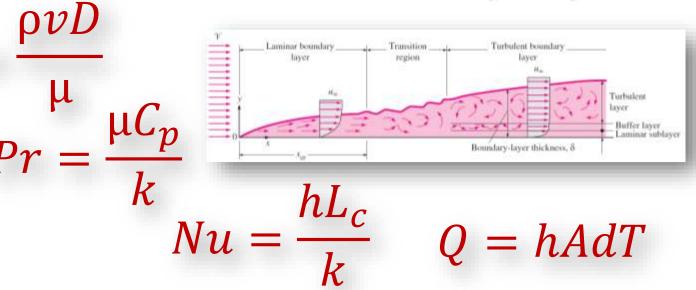

CONVECTIVE HEAT TRANSFER

- HT through Fluid in the Presence of Bulk Fluid Motion
- Natural and Forced
- Fluid Motion Caused by Natural Means (by buoyancy)
- Cooling Down hot Coffee without a Fan ...
- Fluid Forced to Flow by External Means (by external Force)

Governed by Newtons Law of Cooling $\ldots Q = hAdT$

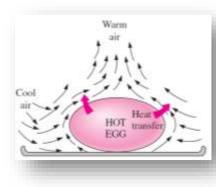

COMPONENTS of CONVECTION

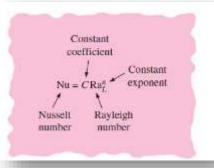

Conduction + Advection

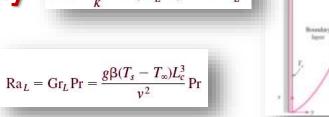

- Flow Properties Like v, ρ , μ , γ , and so on
- Thermal & Velocity Boundary Layers, and
- Flow Patterns like Laminar and Turbulent Flows

Re

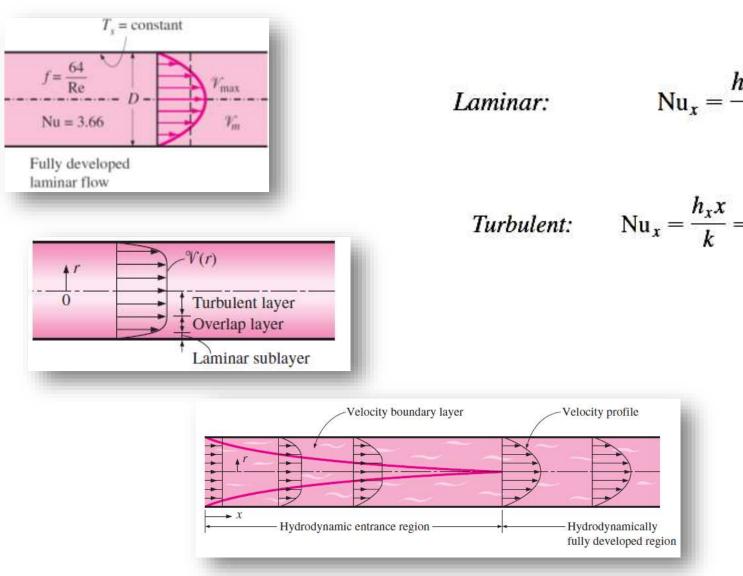
- Reynolds Number
- Prandtl Number and,
- Nusselt numbers







HEAT TRANSFER COEFFICIENTS


- Quantitative Characteristic between Wall & Fluid
- Depends on Thermal & Hydrodynamic Characteristics
- Hydrodynamic and Thermal Boundary Conditions
- Nusselt Correlations for General Estimation
- Enthalpy Difference for Varying Heat Capacity $Nu = \frac{hL_c}{k} = C(Gr_L Pr)^n = C Ra_L^n$
- Overall HTC for Liquid to Liquid HT

CONVECTIVE HEAT TRANSFER - ESTIMATION

$$Nu_{x} = \frac{h_{x}x}{k} = 0.332 \operatorname{Re}_{x}^{0.5} \operatorname{Pr}^{1/3} \qquad \operatorname{Pr} > 0.60$$

$$u_{x} = \frac{h_{x}x}{k} = 0.0296 \operatorname{Re}_{x}^{0.8} \operatorname{Pr}^{1/3} \qquad \begin{array}{c} 0.6 \leq \operatorname{Pr} \leq 60\\ 5 \times 10^{5} \leq \operatorname{Re}_{x} \leq 10^{7} \end{array}$$

Pr > 0.60

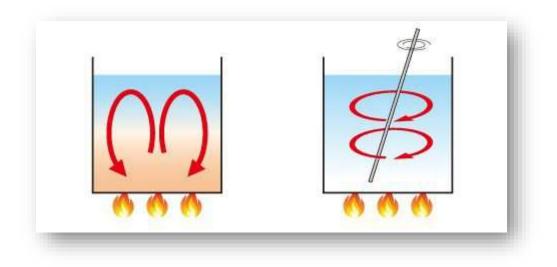
CONVECTIVE HEAT TRANSFER - ESTIMATION

SECONDENTLY VALUED OF GAUGE AT ONE ADMOSPHERED PRESIDENT ($a_i = i.r., a_i = $							
femperature 9	Density fr Agricut	Aluminic Vianaty P Netre ²	Kommuter Vocumity m ² ce	Vheemail Diffusivity at to	Providil Number Fr	Hanidfur Hant Jihgtt	Thermal Conductionly & WCO.K
DRY ADD							
- 10	1.004	16.01×10^{-1}	$0.23 = 10^{-4}$	12844 + 107	0.728	1013	0.020155
- 40	1.038	10.30 + 311*	10.06 = 10*	£3.798 a 30*	0.728	1013	0.02227
- 35	1.453	15.68 + 311.4	16.60 × 10-7	14.017 = 10 ⁻⁴	a.Yan	1853	0.02136
- 30	1.316	16.18 × 10-	$11.61 = 10^{+1}$	16.194×10^{-1}	0.736	\$000	0.88279
- 10	1.143	10.67 = 20.7	$13.41 = 10.^{\circ}$	17.444 = 10**	0.710	1008	0.02341
0	1.400	12.66 × 10+	13.301×10^{-6}	$10.000 = 107^{\circ}$	0.001	1008	0.03543
10	5.047	17.85 + 10+	$14.10 = 10^{-4}$	301004 = 10°	6.706	1066	0.000110
30	1.005	18.14 × 30*	10.00 = 10*	TLATT = 10*	ALWAR-	1000	41.0000.000
30	3.368	18.63 + 10^+	$10.00 = 20^{-7}$	22.863 × 10*	107.0	3000	0.02675
-461	1.138	19.12 + 10*	311.040 = 317 *	24,304 = 20.7	11.000	1005	0.0377340
60	1.000	10-01 - 10-	47.95 = 18**	25.722 ± 10 f	in mail	1000	0.00020
- m	1,000	10.10 × 10+	$3BM7 = 10^{-1}$	ST.194 = 307	n.nim.	LOUIN	0.000000
70.	1.000	20.50 v 40-	IIIIII = 10*	28.518 × 10-*	0.004	1000	0.000460
	1.000	121 HH - 10-	21.09 = 10*	101 104 × 10"	11.000	1000	0.00047
90	41.9779	21.45 × 10+	102.10 = 101+	111 HARA - 101*	0.400	1000	0.00128

Laminar:

 $Nu_x = \frac{h_x x}{k} = 0.332 \text{ Re}_x^{0.5} \text{ Pr}^{1/3}$ Pr > 0.60

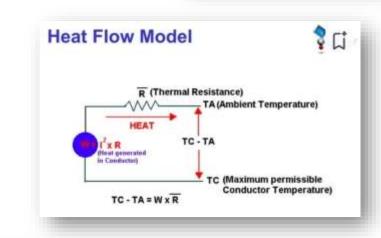
Turbulent:

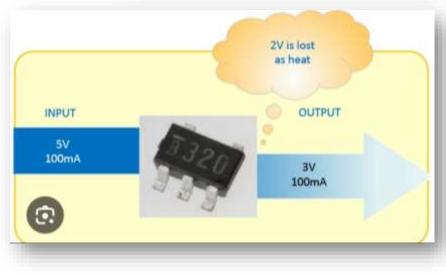

Nu_x =
$$\frac{h_x x}{k}$$
 = 0.0296 Re^{0.8}_x Pr^{1/3} $0.6 \le Pr \le 60$
5 × 10⁵ ≤ Re_x ≤ 10⁷

Flour conditions	Correlation and Validity	Nutations		
A A AMERICAN PLOW	$\begin{split} \theta_{ab} &= 5 \times 100^{5} + 10 \\ \delta_{ab} &= \delta_{ab} \mathrm{Pe}^{-0.100} \\ \delta_{ab} &= \delta_{ab} \mathrm{Pe}^{-0.100} \\ \delta_{ab} &= \delta_{ab} / T \end{split}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Fristian Parlor	$\begin{split} & C_{j_{k}} = 0.001 \; \mathrm{He_{g}}^{-0.1} \\ & \widetilde{\mathrm{C}_{f_{k}}} = 1.220 \; \mathrm{He_{g}}^{-0.1} \\ & \mathrm{Nu}_{g} = 0.232 \; \mathrm{He_{g}}^{-0.012} \; \mathrm{He_{g}}^{-0.012} \end{split}$	mass s from leading edge lines s from leading edge line Reyndda number at leadau line Rrydrodynamis boundar line Rrydrodynamis boundar strone leading edge rene leading edge drone leading edge a distance s from leading edge a distance s from leading edge a distance		
1.1 Constent Wall Tempera- ture	. 0.6 c Pr c 10	from leading edge $\delta_{i_1} = Displacement thickness at \delta_{i_2} = Momentum thickness at x - Local friction coefficient d$		
1.1.1 If heating starts from a distance a, from lending odge	$\begin{split} Nu_{q} &= 0.333 \ \mathrm{He}_{q}^{0.3} \ \mathrm{Pe}_{q}^{0.301} \\ & \cdot \left(1 - (x_{q}/8)^{0.30} \right)^{-0.001} \end{split}$	Two = wall shear stress at z, NY		
1.1.2 For liquid metals (low Prandtl numbers) and for	Nu, 10 1387 He ⁰⁴ D ^(3,20)	U Average friction coefficient upto the distance L from leading edge		

Flow conditions	Condution and Validity	Nationa
13.3 for Digital metals, or allocates Constant beel flue	$\begin{split} Sin_{e^{-2}} & \frac{10.4621 He_{e^{-6.7} Po^{-2.001}_{e^{-1}}}}{11+0.0007 (Po^{-10.7} Po^{-2.01}_{e^{-1}})} \\ Valid Re : Pr = 01 and Pr = 0.001 \\ and Re : Re : Pr = 100 \\ \end{split}$	Har, - Average Houselt Wanter spin trough L Har, - Novelt Humber at Leaster L H Hanter Humber
1.3 Anorage values for securitant band flox or resolution with temperatures	No. 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	$\label{eq:constraint} = \frac{Nu}{Bu} {Pr}$ $C_p = a$ Average Richaus coefficient
1.4 PLAT PLATE TURBULANT PLOW $5 \times 10^4 \times Br_1 \times 10^4$	2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, -	r - distance from broding edge θ_{ini} - by brodynamic brondlery layer Balennat at a
14.1. Proto Techniker from load-	$\begin{split} \lambda_{i} &= \lambda_{i}/2 \\ \lambda_{i} &= (1710) \lambda_{i}, \\ 3\lambda_{i} &= 0.0200 \ \mathrm{d}_{i}, \ ^{10} \ \mathrm{py}^{1/2} \end{split}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

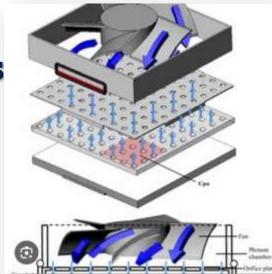
CONVECTIVE VS NATURAL HEAT TRANSFER

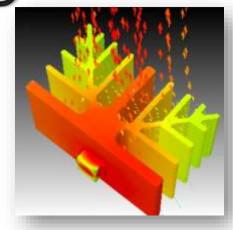

- Motion within Fluid Density Difference
- Motion Caused by External Agent like ower

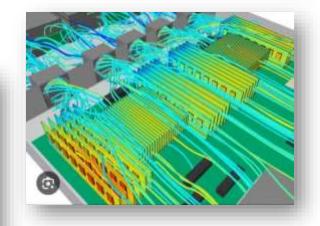


CONVECTION HT IN ELECTRONICS

- Need of Cooling Electronic Components
- Flow of Electron generates Heat
- Evacuation Needed to Maintain below BDT
- Increased Area Enhances Better HT
- Cooling Inevitable

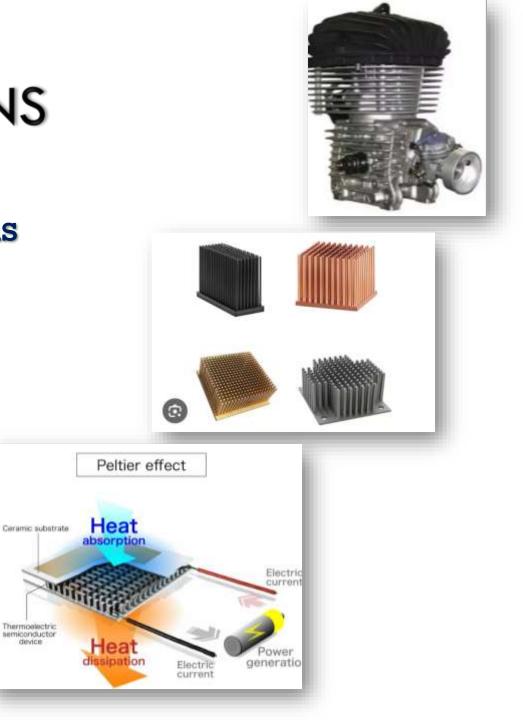






FORCED HT in COMPONENT COOLING

- Evacuation of Heat Continuous
- Failing to Evacuate Breaks Down Component
- Stagnation Possible in Natural Convection
- Mostly Turbulent Pattern Exists
- Fans Adopted for Cooling



FORCED HT Efficient with FINS

- Increased Area Obtained through Fins
- Enhances Better Evacuation Rate
- Heat Transfer Area Exposes Well
- Miniaturization Balanced by Fins
- Great Scope for Cooling

miconducto device

RECAP . . .

- Heat Transfer By Convection Property Oriented
- Natural and Forced Convection Flow Pattern Dependent
- Miniaturization Makes Cooling Inevitable
- Cooling Module Design Never Ending
- Fins Vital in Cooling Modules
- Complexity Minimized with Numerical Modelling