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CONDUCTION – STEADY STATE ONE 

DIMENSION

When the temperature of the body is a function only of radial distance

and is independent of axial distance the systems like cylinder, sphere, may be

treated as One-dimensional Systems.

In case of 2-D systems, the second space coordinate may be so small so

it may be neglected and the multi-dimensional heat flow systems may be

approximated into 1-D analysis and also the differential equations can be

simplified, as a result of this simplification easy solutions are available.



FOURIER LAW OF HEAT CONDUCTION

Fourier law of heat conduction

Fourier’s law states that the negative gradient of temperature and the

time rate of heat transfer is proportional to the area at right angles of that

gradient through which the heat flows. Fourier’s law is the other name of the

law of heat conduction.

Newton’s law of cooling and Ohm’s law are a discrete and electrical

analog of Fourier’s law.



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

1. General heat conduction equation to Cartesian coordinates

Consider an infinitesimal rectangular volume element (parallelepiped) of

sides dx, dy, dz parallel respectively to the three axes (X,Y,Z) in a medium in

which temperature is varying with location & time.

Let ‘t’ = Temperature assumed uniform over the entire surface ‘ABCD’

= Temperature changes and rate of change along x-direction

= Change of temperature through distance ‘dx’



GENERAL HEAT CONDUCTION 

EQUATION TO CARTESIAN 

COORDINATES

= Temperature on the right face EFGH (at a distance ‘dx’ from the left face 

ABCD)

= thermal conductivities along X, Y, Z axes



GENERAL HEAT CONDUCTION 

EQUATION TO CARTESIAN 

COORDINATES

If the directional characteristics of a material are equal / same, it is called

as Isotropic material and if kx ǂ ky ǂ kz Anisotropic material

Qg = heat generation / unit volume/ unit time

Inside the control volume there may be heat sources due to flow of

electric current in electric motors and generators, nuclear fission etc.

qg may be function of position or time or both

ρ = mass density of material

c = specific heat of the material



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Energy balance equation for volume element

A+B = C. here C = energy stored in the element 

C = increase in internal energy / unit time + workdone by the element / unit 

time.

No work is done by the element / unit time

So A+B = Increase in internal energy/ unit time.



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

A = net heat accumulated the sum of 

B = Internal heat generated (i.e. )

C = Internal energy stored =

Where:

M = mass of the element,

Cp = specific heat,

= change in temperature



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Now

To find A:

Qx = the rate of heat flow into the element in ‘x’ direction through the face 

ABCD



GENERAL HEAT CONDUCTION EQUATION TO 

CARTESIAN COORDINATES

Similarly in ‘y’ direction along face ABFE:

Similarly in ‘z’ direction along face DHEA:

Then the rate of heat flow in x direction through face ‘x + dx’, EFGH is



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Similarly in ‘y’ direction along face CDGH:

Similarly in ‘z’ direction along face CGBF:



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Therefore the net flow of heat entering the element in x direction is the 

difference between entering and leaving heat flow rates, which is given by

(a)

Similarly for:

(b)

(c)



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

The net heat conducted into the element is:

A = (a)+ (b)+ (c)



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Since A + B = C

For most engineering problems  

The general 3D equation becomes:



GENERAL HEAT CONDUCTION EQUATION 

TO CARTESIAN COORDINATES

Where



GENERAL HEAT CONDUCTION 

EQUATION TO CARTESIAN 

COORDINATES

For 1D y=z=0, or vice versa 

The equation may be written as



Other simplified forms of heat conduction 

equation in Cartesian coordinates
Other simplified forms of heat conduction equation in Cartesian coordinates :

1. When no heat source is present:



Other simplified forms of heat conduction 

equation in Cartesian coordinates
2. When temperature does not depend on time, the conduction then takes place 

in steady state.

In the absence of heat generation



Other simplified forms of heat conduction 

equation in Cartesian coordinates
3. Steady state 1-D heat transfer:

4. Steady state 1-D without internal heat generation:

5. Steady state 2-D without internal heat generation:



Other simplified forms of heat conduction 

equation in Cartesian coordinates
6. Unsteady state 1-D without internal heat generation:



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES
Heat conduction equation in cylindrical coordinates:

Consider a small volume of sides dr, rdΦ, dz

Assume the material to be isotropic.

The rate of heat flow into the element in r direction:

In (r + dr) direction



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES
The net rate of heat entering the element in ‘r’-direction is:



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES

…..(1)

Then for:



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES

….(2)



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES
In z- direction

Qz – Qz+dz  



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES

….(3)

The net heat conducted into the element rdΦ dr. dz / unit time

….(A)

Since A + B = C

Net heat conducted      + internal heat generated   = change in internal 

energy / unit time / unit time / unit time 



HEAT CONDUCTION EQUATION IN 

CYLINDRICAL COORDINATES

From A, B, C take out rdΦ dr. dz and divide by K.

Then A+B = C becomes



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
Heat conduction equation in Spherical Coordinates System:

Consider an infinitesimal spherical element of an isotropic material 

having the coordinates (r, Φ, Ψ). The sides of the element are dr, rd Ψ & r sinΨ 

dΦ.

Energy balance equation (A+ B = C)

A = (Qr – Qr + dr) + (QΨ – QΨ + dΨ) + (QΦ – QΦ + dΦ)

B = qg.dr.rdΨ. rsin Ψ. dΦ,

C = 



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
Now, the rate of heat flow in y direction

The rate of heat flow out of the element in r- direction



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM

Multiply and divide by r2

.......(1)



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
Similarly in z- direction (Ψ direction)

Rate of heat flow out of rdΨ, the element in Ψ direction



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
Multiply & divide by sin Ψ

…..(2)

In Φ direction ( x- direction)



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM

…..(3)

Add (1) +(2) + (3)



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
A =

B =

C =

The net heat conducted into the element dr.rdΨ.rsinΨ.dΦ / unit time is    



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
The net heat conducted into the element dr.rdΨ.rsinΨ.dΦ / unit time is

Written as:



HEAT CONDUCTION EQUATION IN 

SPHERICAL COORDINATES SYSTEM
For steady state 1 D heat conduction in radial direction without heat 

generation.



HEAT CONDUCTION THROUGH PLANE 

WALL

Case (1): Uniform Thermal Conductivity

Case (2): Variable Thermal Conductivity



Case (1): Uniform Thermal Conductivity

Uniform Thermal Conductivity:

Assumptions:

Wall – plane wall

Material – homogenous

Heat flow – x- direction



Let:

L – Thickness of the plane wall.

A – cross section area of the wall.

K – thermal conductivity of the wall material

T1, T2 – Temperatures maintained at the faces 1 & 2.

General heat conduction equation in Cartesian Coordinates:





To find the solution for equation a, it requires two BC’s since it is a 2nd order 

DE’s.

BC’s are 

T = T1 at x = 0;

T = T2 at x = L;

Integrating equation (A) twice

...(B)







Thermal resistance of the wall =

....(1)

Weight of the wall = ρ.A.L ....(2)

Sub the value of L in (2)

W = (ρ.k).A 2.Rth

The lightest insulation will be one which has small product of density (ρ) & (k)



Case (2): Variable Thermal Conductivity

1. Temperature variation in terms of surface temperature (t1, t2)

2. Temperature variation in terms of heat flux (q)

1. Temperature variation in terms of surface temperature (t1, t2):

let the thermal conductivity vary with temperature according to the 

relation.

K = ko (1 + βt)

When the effect of thermal conductivity is considered.







HEAT CONDUCTION THROUGH A 

COMPOSITE WALL
Heat conduction through a composite wall:

consider the transmission of heat through a composite wall consisting of 

a number of slabs.



HEAT CONDUCTION THROUGH A 

COMPOSITE WALL
Assuming that there is a perfect contact between the layers and no temperature 

drop occurs the interface between the materials.



If the wall consists of both Parallel and Series Resistances, the electrical 

analogy may be used.



OVERALL HEAT RESISTANCE

It is the heat transmitted per unit area per unit time per degree 

temperature difference between the bulk fluids on each sides of the metal. 



HEAT TRANSFER THROUGH 

COMPOSITE PIPES WITH INSIDE AND 

OUTSIDE CONVECTION

Temperature of hot fluid Ta, 

Heat transfer coefficient flowing through pipe ha,

Separated by two layers from atmosphere.

Thermal conductivity of 1st layer – k1,

Thermal conductivity of 2nd layer – k2,

Outside surface heat is being transferred to a cold 

fluid at temperature Tb, heat transfer coefficient hb.



Heat transfer by convection at side ‘A’



Similarly at section ‘2’

Heat transfer by convection at side ‘B’ is





Add all above equations on both sides:





Problem:

Calculate the rate of heat loss from a red brick wall of length 5m, height

4m, thickness 0.25m. The temperature of the inner surface is 110ºC and that of

the outer surface is 40ºC. The thermal conductivity of red brick, k= 0.70

W/mK. Calculate also the temperature at an interior point of the wall 20 cm

distance from the inner wall.

Solution:



At x = 0.2





Problem:

A wall of furnace is made up of inside layer of silica brick 120 mm thick

covered with a layer of magnesite brick 240 mm thick. The temperature at the

inside surface of silica brick wall and outside surface of magnesite brick wall

are 752ºC and 110ºC respectively. The contact thermal resistance between the

two walls at the interface is 0.0035/W per unit wall area. If thermal

conductivities of silica and magnesite bricks are 1.7 W/mºC and 5.8 W/mºC,

Calculate:

1. Rate of heat loss per unit area of walls

2. Temperature drop at the interface



Solution:

(1)

= 

= 



=

=



(2)

To find t2



To find t3:

Answers:

(1)

(2)



Problem:

Two slabs each 120 mm thick, have thermal conductivities of 14.5

W/mºC and 210 W/mºC. These are placed in contact, but due to roughness, onl

30% of area is in contact and the gap in the remaining area is 0.025 mm thick

and is filled with air. If the temperature of the hot surface is at 220ºC and the

outside surface of other slab is at 30ºC, determine:

1. Heat flow through the composite system

2. Contact resistance and temperature drop in contact

Assume that the conductivity of air is 0.032 W/mºC and that half of the

contact (of the contact area) is due to either metal.



Solution:

(1) 

=



= =



R2 





R3



(ii) Contact Resistance = 9.7 x 10-8 ºC/ W

Temperature drop in contact = Q x Contact Resistance

= 21000 x 9.7 x 10-8

= 0.2 x 10-2 (or) 0.015 ºC



Problem:

A cold storage rooms has walls made of 220 mm of brick on the outside,

90mm of plastic foam and finally of 16mm of wood on the inside. The outside

and inside temperature are 25 ºC & -3 ºC. If

hi = 30 W/m 2 ºC

hout = 11 W/m 2 ºC

kbrick = 0.99 W/m 2 ºC

kfoam = 0.022 W/m 2 ºC

kwood = 0.17 W/m 2 ºC

Determine :

1. Rate of heat removal by refrigeration if the total wall area is 85 m 2

2. Temperature of the inside surface of the brick



Solution: 







FINS

FINS:

Heat transfer by convection between a surface and the fluid surrounding

it can be increased by attaching to the surface thin strips of metal called fins.

Fins increases the effective area of the surface thereby increasing the

heat transfer by convection.



Common types of fin:

1. Infinitely long fin

2. Short fin (end insulated)

3. Short fin (end not insulated)



Temperature distribution and heat dissipation in fin:

A steady state conditions heat balance equation for the small element can 

be given as 



.....(A)

where;

...(1)

....(2)



....(3)

Sub  (1), (2), (3) in (A)



.....(B)

Where;

(D.B. Pg: 50)



When θ = T - T∞

Equation (B) becomes

....(C)

Equation (C) shows that the temperature is a function of x and m. since it is a 

2nd order linear differential equation. The general solution for equation (C) is

.....(D)



The temperature distribution and heat dissipation depends upon the following 

fin conditions:

Case (i): infinitely long fins

if a fin is infinitely long, the surrounding fluid temperature and the 

temperature of the fin at its ends are equal.

(i.e.) at

x = 0; T = Tb

x = ∞; T = T ∞



From equation (D) 

Therefore, 

.....(4)

Substituting the values at x = 0; T = Tb In equation (4)

......(5)



Substituting the values at x = ∞; T = T ∞ In equation (4)

Sub C2 = 0 in eq (5)



Sub the values of in equation (4)

Where;

T = Intermediate temperature in ‘K’

Tb = base temperature in ‘K’

T∞ = surrounding temperature in ‘K’

x = distance

m = 



After knowing the temperature distribution, the heat flow through the fin is 

obtained by integrating the heat lost by convection over the entire fin surface.

Heat lost by convection, 



since;



...... (From D.B. Pg: 50)



Case (ii): Fin with Insulated End (Short Fins)

This fin has a finite length and the tip of fin is insulated.

at

x = 0; T = Tb

x=L,dT /dx=0

From equation (4)

.....(4)



Differentiate the above equation

....(a)

Applying the 1st boundary condition’s

x = 0; T = Tb   in equation (4)

......(b)



2nd boundary condition’s:

x = L; in  (a)  



......(c)



Substitute the equation (c) in equation (b)



Sub the value of in C2 equation (c):



Substitute the value of C1 & C2 in eq (4)



Multiply the numerator & denominator of RHS by e-mL & emL



In terms of hyperbolic function it can be written as



Temperature distribution of fin with insulated end



We know that



At x = 0;



Fin Efficiency

Fin Efficiency

The fin efficiency is defined as the ratio of the energy transferred

through a real fin to that transferred through an ideal fin. An ideal fin is

thought to be one made of a perfect or infinite conductor material. A perfect

conductor has an infinite thermal conductivity so that the entire fin is at the

base material temperature.



Fin Effectiveness

A fin can effectively enhance heat transfer which is characterized by the 

fin effectiveness, ϵf ,which is as the ratio of fin heat transfer and the heat 

transfer without the fin. For an adiabatic fin:



1. INFINITELY LONG FIN:

a) Temperature distribution:

b)



2. SHORT FIN:

a) Temperature distribution:

b)



Case (iii): SHORT FIN END NOT INSULATED:

The boundary conditions are:

i. At x = 0, 

ii. Heat conducted to the fin at x = l = heat convected from the end to 

surroundings.



Where ACS (cross sectin of heat conduction) equals ASU (surface area from 

which the convection heat transfer takes place), at the tip of the fins

ACS = ASU



....(1)  at x = l   (θ = T - T ∞)

Applying the boundary condition to the equation 

...(A)

At x = 0, we get, 

(2)



Differentiate equation (A) w.r.t.x.

.....(3)

Equating 1 & 3



...(4)

Considering the equations 2 & 4 and solving 





We know 





Substitute the values of constant C1 & C2 in equation (4)



Take out  



Temperature distribution:



The rate of heat flow from the fin

...(5)

....(B)



Differentiating the expression ‘B’ we get



(6)



Sub 6 in 5

Where;





PROBLEM:

A long rod 5 cm diameter its base is connected to a furnace wall at 150

ºC, while the end is projecting into the room at 20 ºC. The temperature of the

rod at distance of 20 cm apart from its base is 60 ºC. The conductivity of the

material is 200 W/mK. Determine convective heat transfer coefficient.



Solution:

Condition: fin is a long fin

Refer HMT D.B. Pg: 50





An aluminum alloy fin of 7mm thick and 50 mm long protrudes from a wall,

which is maintained at 120 ºC. The ambient air temperature is 22 ºC. The heat

transfer coefficient and conductivity of the fin material are 140 W/m 2 K and

55 W/m 2 K respectively. Determine:

I. Temperature at the end of the fin

II. Temperature at the middle of the fin

III. Total heat dissipated by the fin

(assume end is insulated)

Solution:

Since the length of the fin is 50 mm, the given problem is treated as short

fin problem. Assume the end as insulated.



From HMT D.B Pg: 49,.

Temperature distribution for short fin end insulated:

(1) Temperature at the fin (i.e. x = L)









(2) Temperature at the middle of the fin: 

(put x = L/2)



(3) Total heat dissipated:

From HMT D.B. Pg: 50



A rectangular aluminum fins of  0.5 mm square and 12 mm long are attached 

on a plane plate which is maintained at 80 ºC. Surrounding air temperature is 

22 ºC. Calculate the no of fins required to generate 35 x 10 -3 of heat. Take 

k = 165 W/mK

h = 10 W/m 2K

Assume no heat loss from the tip of the fin. 

Solution:

Since the problem is associated with short fin with end insulated. 







Heat transfer / fin:





A circumferential rectangular fins of 140 mm wide and 5mm thick are fitted on

a 200 mm diameter tube. The fin base temperature is 170 ºC and the ambient

temperature is 25 ºC. Estimate fin efficiency and heat loss per fin.

Take 

k = 200 W/mK

h = 140 W/m 2K

Solution: 

From HMT D.B. Pg: 51

Converted length = 







From D.B Pg: 51

Fin efficiency = 33%



A stainless steel cylindrical rod fin of 1.2 cm diameter and 6 cm height

with thermal conductivity of 25 W/mK is exposed to surrounding with a

temperature of 60 ºC, the heat transfer coefficient is 45 W/m 2K and the

temperature at the base of the fin is 100 ºC. Determine.

1. Fin efficiency

2. Temperature at the edge of the rod

3. Heat dissipation

4. Fin effectiveness

Solution:

1. Fin efficiency (for insulated ends)



1. Fin efficiency (for insulated ends)

From HMT D.B Pg. 50





(2) Temperature at the edge of the rod:

Temperature distribution: (short fin and insulated)



(3) Heat dissipation for short fin end insulated:

(4) Fin effectiveness (for insulated tip)





TRANSPORT EQUATIONS FOR MOVING-

BOUNDARY PROBLEMS
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