

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Heating & Cooling curve of Drive

Let W = Loss taking place in a machine in watts

G = Mass of the machine in kg

S = Specific heat in watt-sec/kg °C

 θ = Rise in temperature above ambient temperature in °C

 θ_F = Final temperature rise with continuos load in °C

A = Area of cooling surface in m²

 λ = Rate of heat dissipation in watts/sq meter/°C rise in temperature.

Let us consider the small time interval dt in which temperature rise of the machine is $d\theta$ due to the losses taking place in the machine. Total losses in machine during

time interval dt = W dt

Heat dissipation from surface during the same time interval = $A \lambda \theta \cdot dt$ Additional heat stored in the machine = $G.S.d\theta$

We have, heat developed = heat absorbed + heat dissipated

$$W \cdot dt = G.S.d\theta + A\lambda\theta \cdot dt \qquad ...(i)$$

 $\therefore W \cdot dt - A\lambda\theta \cdot dt = G.S.d\theta$

 $\therefore \quad (W - A\lambda\theta) dt = G.S.d\theta$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Heating & Cooling curve of Drive

$$\frac{dt}{G.S.} = \frac{d\theta}{W - A\lambda\theta}$$

$$\frac{dt}{\left(\frac{GS}{A\lambda}\right)} = \frac{d\theta}{\left(\frac{W}{A\lambda} - \theta\right)}$$
...(ii)

When final temperature is reached, there is no heat absorbed. The heat which is generated is totally dissipated.

Substituting equation (iii) in equation (ii) we get,

$$\frac{dt}{\left(\frac{GS}{A\lambda}\right)} = \frac{d\theta}{\theta_F - \theta}$$

Integrating both sides of above equation

$$\begin{split} &\int \frac{dt}{\left(\frac{GS}{A\lambda}\right)} = \int \frac{d\theta}{\theta_F - \theta} \\ &\frac{A\lambda}{GS} \cdot t = -ln(\theta_F - \theta) + K \end{split} \qquad ...(iv) \end{split}$$

where K = constant of integration

To find out value of K, let us use initial condition

At
$$t = 0$$
, $\theta = \theta_1$

$$\therefore \qquad 0 = -ln(\theta_F - \theta_1) + K$$

$$\therefore \qquad \qquad K = ln(\theta_F - \theta_1)$$

Substituting this value of K in equation (iv),

$$\frac{A \lambda}{GS} \cdot t = -ln(\theta_F - \theta) + ln(\theta_F - \theta_1)$$

$$\therefore \frac{A \lambda}{GS} \cdot t = ln \left(\frac{\theta_F - \theta_1}{\theta_F - \theta} \right)$$

$$\therefore \qquad \qquad e^{\frac{A\,\lambda}{GS}\,t} \;\; = \;\; \frac{\theta_F - \theta_1}{\theta_F - \theta}$$

$$\theta_F - \theta = (\theta_F - \theta_1) e^{-\frac{A\lambda}{GS}t}$$

$$\therefore \qquad \qquad \theta \; = \; \theta_F - (\theta_F - \theta_1) \; e^{-\frac{A \, \lambda}{GS} \, t}$$

The term GS/A λ is called heating time constant of the machine and is denoted by τ .

$$\therefore \qquad \qquad \boxed{\theta = \theta_F - (\theta_F - \theta_1) e^{-t/\tau}}$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Heating & Cooling curve of Drive

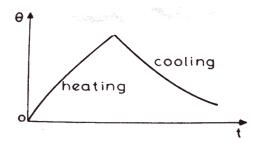
If the machine is started from ambient temperature θ_1 = 0 °C then above equation becomes,

$$\dot{\theta} = \theta_{\rm F} \, (1 - {\rm e}^{-t/\tau})$$

Let us consider time period $t = \tau$ then

$$\theta = \theta_F (1 - e^{-1}) = \theta_F \left(1 - \frac{1}{e} \right) = 0.632 \ \theta_F$$

Similarly, at
$$t=2\tau$$
, $\theta=0.865~\theta_F$ $t=3\tau$, $\theta=0.95~\theta_F$ $t=4\tau$, $\theta=0.982~\theta_F$



Heating and cooling curves