

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS ENGINEERING

19MCT201 - DESIGN OF DIGITAL CIRCUITS II YEAR - III SEM

UNIT 5 – DIGITAL LOGIC FAMILIES AND PLD

TOPIC 7– Logic Families

Logic Families

Logic Families indicate the type of logic circuit used in the IC. The main types of logic families are:

- •TTL(Transistor Transistor Logic)
- •CMOS (Complementary MOS)
- •ECL (Emitter Coupled Logic)

Characteristics of Logic Families

The main characteristics of Logic families include:

- •Speed
- •Fan-in
- •Fan-out
- •Noise Immunity
- •Power Dissipation

Speed: Speed of a logic circuit is determined by the time between the application of input and change in the output of the circuit.

Fan-in: It determines the number of inputs the logic gate can handle.

Fan-out: Determines the number of circuits that a gate can drive.

Noise Immunity: Maximum noise that a circuit can withstand without affecting the output. Power: When a circuit switches from one state to the other, power dissipates.

- first introduced by in 1964 (Texas Instruments)
- TTL has shaped digital technology in many ways
- Standard TTL family (e.g. 7400) is obsolete
- Newer TTL families still used (e.g. 74ALS00)

Distinct features

- Multi-emitter transistors
- Totem-pole transistor arrangement

Bipolar Transistor-Transistor Logic (TTL)

TTL evolution

Schottky series (74LS00) TTL

 A major slowdown factor in BJTs is due to transistors going in/out of saturation

• Shottky diode has a lower forward bias (0.25V)

• When BC junction would become forward biased, the Schottky diode bypasses the

74 Series

74S Series

Bipolar. Deep saturation prevented by

BC Schottky Diode. Reduced storage-

time delay. Practically obsolete.

Bipolar. Saturated BJTs. Practically obsolete. Don't use in new designs!

74AS Series

Innovations in IC design and fabrication. Improvement in speed and power dissipation. Relatively popular. Fastest TTL available.

ECL

Emitter-Coupled Logic (ECL)

- <u>PROS</u>: Fastest logic family available (~1ns)
- CONS: low noise margin and high power dissipation
- Operated in emitter coupled geometry (recall differential amplifier or emitter-follower), transistors are biased and operate near their Qpoint (never near saturation!)
- Logic levels. "0": -1.7V. "1": -0.8V
- Such strange logic levels require extra effort when interfacing to TTL/CMOS logic families.
- Open LTspice example: ECL inverter...

Complimentary MOS (CMOS)

- Other variants: NMOS, PMOS (obsolete)
- Very low static power consumption
- Scaling capabilities (large integration all MOS)
- Full swing: rail-to-rail output
- Things to watch out for:
- don't leave inputs floating (in TTL these will float to HI, in CMOS you get undefined behaviour) - susceptible to electrostatic damage (finger of

death)

• Open LTspice example: CMOS NOT and NAND...

- frequency dependence)

- highest frequencies

CMOS

• TTL power essentially constant (no • CMOS power scales as $\propto f \times C \times V^2$

• At high frequencies (>> MHz) CMOS dissipates more power than TTL • Overall advantage is still for CMOS even for very fast chips – only a relatively small portion of complicated circuitry operates at

CMOS

4000 Series

CMOS. Wide supply voltage range. High noise margin. Low speed. Weak output drive. Practically obsolete.

• Reduction of dynamic losses through successively decreasing supply voltages: $12V \rightarrow 5V \rightarrow 3.3V \rightarrow 2.5V \rightarrow 1.8V$ LVC/ALVC/AVC CD4000

• Power reduction is one of the keys to progressive growth of integration

TTL Vs ECL Vs CMOS

	TTL	ECL	CMOS
Base Gate	NAND	OR/NOR	NAND/NOR
Fan-in	12-14	>10	>10
Fan-out	10	25	50
Power dissipation (mW)	10	175	0.001
Noise Margin	0.5V	0.16V	1.5V
		(lowest)	(Highest)
Propagation Delay (ns)	10	<3	15
		lowest	Highest
Noise immunity	Very good	good	excellent

Implementation of combinational logic using PROM , PLA and PAL

[ii] PAL has a programmable AND array and a fixed OR array. The full-adder implementation using PAL is shown below:

Here, cross mark (X) indicates fusible (programmable) links and dot indicates fixed connections.

DIGITAL LOGIC FAMILIES/DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT

Implementation of combinational logic using PROM, PLA and PAL

Problem Give the implementation of BCD-to-7 segment decoder using PLA. Assume common cathode display.

BCD Input				Outputs						
A	в	С	D	a	b	c	đ	e	t	8
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1

Consider the exp

7-Segment display format

pression for different outputs a, b, c, d, e, f, g

$$a = \sum 0, 2, 3, 5, 6, 7, 8, 9$$

 $b = \sum 0, 1, 2, 3, 4, 7, 8, 9$
 $c = \sum 0, 1, 3, 4, 5, 6, 7, 8, 9$
 $d = \sum 0, 2, 3, 5, 6, 8$
 $e = \sum 0, 2, 6, 8$
 $f = \sum 0, 4, 5, 6, 8, 9$

Implementation of combinational logic using PROM , PLA and PAL

The implementation of BCD-to-7 segment decoder using PLA is shown below:

DIGITAL LOGIC FAMILIES/DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT

ASSESSMENT - 1

Mux relates with us....

Question 1 Which combinational circuit is renowned for selecting a single Which is the major functioning responsibility of the input from multiple inputs & directing the binary information multiplexing combinational circuit? to output line? ▶ a) Data Selector a) Decoding the binary information ▶ b) Data distributor **b**) Generation of all minterms in an output function with OR-gate **c**) Both data selector and data distributor **c**) Generation of selected path between multiple sources and a single destination ▶ d) DeMultiplexer d) Encoding of binary information MULTIPLEXER/DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT 6/16/2020

Question 2

References

- <u>https://brilliant.org/wiki/de-morgans-laws/</u>
- <u>https://circuitglobe.com/demorgans-theorem.html</u>
- https://www.electrical4u.com/ ullet

