
 

Units 

 

Dimensions are measured in terms of units. For example, the dimension of length is measured 

in terms of length units: the micrometre, millimetre, metre, kilometre, etc.  

 

So that the measurements can always be compared, the units have been defined in terms of 

physical quantities. For example:  

 

• the metre (m) is defined in terms of the wavelength of light;  

• the standard kilogram (kg) is the mass of a standard lump of  platinum-iridium; 

• the second (s) is the time taken for light of a given wavelength to vibrate a given 

number of times; 

• the degree Celsius (°C) is a one-hundredth part of the temperature interval 

between the freezing point and the boiling point of water at standard pressure;  

• the unit of force, the newton (N), is that force which will give an acceleration of   

1 m sec-2 to a mass of 1kg;  

• the energy unit, the newton metre is called the joule (J), and  

• the power unit, 1 J s-1, is called the watt (W). 

 

More complex units arise from equations in which several of these fundamental units are 

combined to define some new relationship. For example, volume has the dimensions [L]3 and 

so the units are m3. Density, mass per unit volume, similarly has the dimensions [M]/[L]3, 

and the units kg/m3. A table of such relationships is given in Appendix 1. When dealing with 

quantities which cannot conveniently be measured in m, kg, s, multiples of these units are 

used. For example, kilometres, tonnes and hours are useful for large quantities of metres, 

kilograms and seconds respectively. In general, multiples of 103 are preferred such as 

millimetres (m x 10-3) rather than centimetres (m x 10-2). Time is an exception: its multiples 

are not decimalized and so although we have micro (10-6) and milli (10-3) seconds, at the 

other end of the scale we still have minutes (min), hours (h), days (d), etc.  

 

Care must be taken to use appropriate multiplying factors when working with these units. The 

common secondary units then use the prefixes micro (µ, 10-6), milli (m,10-3), kilo (k, 103) and 

mega (M, 106).  

 

 

Dimensional Consistency 

 

All physical equations must be dimensionally consistent. This means that both sides of the 

equation must reduce to the same dimensions. For example, if on one side of the equation, the 

dimensions are [M] [L ]/[T]2, the other side of the equation must also be [M] [L]/[T]2 with the 

same dimensions to the same powers. Dimensions can be handled algebraically and therefore 

they can be divided, multiplied, or cancelled. By remembering that an equation must be 

dimensionally consistent, the dimensions of otherwise unknown quantities can sometimes be 

calculated. 

 

EXAMPLE 1.1. Dimensions of velocity 

In the equation of motion of a particle travelling at a uniform velocity for a time t, the 

distance travelled is given by L = vt. Verify the dimensions of velocity. 

 



Knowing that length has dimensions [L] and time has dimensions [t] we have the 

dimensional equation: 

[v] = [L]/[t] 

the dimensions of velocity must be [L][t]-1 

 

The test of dimensional homogeneity is sometimes useful as an aid to memory. If an equation 

is written down and on checking is not dimensionally homogeneous, then something has been 

forgotten. 

 

 

Unit Consistency and Unit Conversion 

 

Unit consistency implies that the units employed for the dimensions should be chosen from a 

consistent group, for example in this book we are using the SI (Systeme Internationale de 

Unites) system of units. This has been internationally accepted as being desirable and 

necessary for the standardization of physical measurements and although many countries 

have adopted it, in the USA feet and pounds are very widely used. The other commonly used 

system is the fps (foot pound second) system and a table of conversion factors is given in 

Appendix 2. 

 

Very often, quantities are specified or measured in mixed units. For example, if a liquid has 

been flowing at 1.3 l /min for 18.5 h, all the times have to be put into one only of minutes, 

hours or seconds before we can calculate the total quantity that has passed. Similarly where 

tabulated data are only available in non-standard units, conversion tables such as those in 

Appendix 2 have to be used to convert the units. 

 

EXAMPLE 1.2. Conversion of grams to pounds  

Convert 10 grams into pounds. 

 

From Appendix 2, 1lb = 0.4536kg and 1000g = 1kg  

so    (1lb/ 0.4536kg) = 1 and (1kg/1000g) = 1  

therefore 10g  =10g x (1lb/0.4536kg) x (1kg/1000g)                                                                      

= 2.2 x 10-2 lb 

10 g = 2.2 x 10-2 lb 

 

The quantity in brackets in the above example is called a conversion factor. Notice that 

within the bracket, and before cancelling, the numerator and the denominator are equal. In 

equations, units can be cancelled in the same way as numbers. Note also that although 

(1lb/0.4536kg) and (0.4536kg/1lb) are both = 1, the appropriate numerator/denominator must 

be used for the unwanted units to cancel in the conversion. 

 

EXAMPLE 1.3. Velocity of flow of milk in a pipe. 

Milk is flowing through a full pipe whose diameter is known to be 1.8 cm. The only measure 

available is a tank calibrated in cubic feet, and it is found that it takes 1 h to fill 12.4 ft3. What 

is the velocity of flow of the liquid in the pipe in SI units? 

 

Velocity is [L]/[t] and the units in the SI system for velocity are therefore m s-1: 

    v = L/t where v is the velocity. 

Now    V = AL where V is the volume of a length of pipe L of cross-sectional area A 

i.e. L = V/A. 



Therefore v = V/At 

Checking this dimensionally 

     [L][t]-1 = [L]3[L]-2[t]-1 = [L][t]-1 which is correct. 

 

Since the required velocity is in m s-1, volume must be in m3, time in s and area in m2. 

From the volume measurement  

V/t = 12.4ft3 h-1 

From Appendix 2, 

1 ft3 = 0.0283 m3 

so 1 = (0.0283 m3 /1 ft3 ) 

1 h = 60 x 60 s 

so (1 h/3600 s) = 1 

 

Therefore V/t  = 12.4 ft3/h x (0.0283 m3/1 ft3) x (1 h/3600 s) 

= 9.75 x 10-5 m3 s-1. 

Also the area of the pipe A  = D2/4 

= (0.018)2 /4 m2 

= 2.54 x 10-4 m2 

        v  = V/t x 1/A 

= 9.75 x 10-5/2.54 x 10-4 

= 0.38 m s-1  

 

EXAMPLE  1.4. Viscosity () conversion from fps to SI units 

The viscosity of water at 60°F is given as 7.8 x 10-4 lb ft-1 s-1. 

Calculate this viscosity in N s m-2.  

 

From Appendix 2,  

0.4536 kg = 1 lb 

0.3048 m = 1 ft. 

 

Therefore 7.8 x 10-4 lb ft-1 s-1 = 7.8 x 10-4 lb ft-1 s-1 x 0.4536 kg  x  1 ft 

      1 lb          0.3048m  

= 1.16 x 10-3 kg m-1 s-1 

 

Remembering that one Newton is the force that accelerates unit mass at 1ms-2  

1 N      = 1 kg m s-2  

therefore  1 N s m-2  = 1 kg m-1 s-1 

 

Required viscosity =  1.16 x 10-3   N s m-2. 

 

EXAMPLE 1.5. Thermal conductivity of aluminium: conversion from fps to SI units 

The thermal conductivity of aluminium is given as 120 Btu ft-1 h-1 °F-1. Calculate this thermal 

conductivity in J m-1 s-1 °C-1. 

 

From Appendix 2,  

1 Btu    = 1055 J 

0.3048 m   = 1 ft 

°F        = (5/9) °C. 

 

Therefore 120 Btu ft-1 h-1 °F-1 



=  120 Btu ft-1 h-1 °F-1 x 1055 J  x  1 ft      x  1h    x    1°F 

   1 Btu    0.3048m    3600s   (5/9)°C 

=   208 J m-1 s-1 °C-1 

 

Alternatively a conversion factor 1Btu ft-1 h-1 °F-1can be calculated:  
 

1Btu ft-1h-1°F-1 

= 1Btu ft-1 h-1 °F-1 x  1055 J   x   1 ft       x    1h     x   1°F 

       1 Btu      0.3048 m     3600s    (5/9)°C  

= 1.73 J m-1 s-1 °C-1 

 

Therefore 120 Btu ft-1 h-1 °F-1  

= 120 x 1.73J m-1 s-1 °C-1 

= 208 J m-1 s-1 °C-1 

 

Because engineering measurements are often made in convenient or conventional units, this 

question of consistency in equations is very important. Before making calculations always 

check that the units are the right ones and if not use the necessary conversion factors. The 

method given above, which can be applied even in very complicated cases, is a safe one if 

applied systematically. 

 

A loose mode of expression that has arisen, which is sometimes confusing, follows from the 

use of the word per, or its equivalent the solidus, /. A common example is to give acceleration 

due to gravity as 9.81 metres per second per second. From this the units of g would seem to 

be m/s/s, that is m s s-1 which is incorrect. A better way to write these units would be  

g = 9.81 m/s2 which is clearly the same as 9.81 m s-2. 

 

Precision in writing down the units of measurement is a great help in solving problems.  

 

 

Dimensionless Ratios 

 

It is often easier to visualize quantities if they are expressed in ratio form and ratios have the 

great advantage of being dimensionless. If a car is said to be going at twice the speed limit, 

this is a dimensionless ratio, which quickly draws attention to the speed of the car. These 

dimensionless ratios are often used in process engineering, comparing the unknown with 

some well-known material or factor. 

 

For example, specific gravity is a simple way to express the relative masses or weights of 

equal volumes of various materials. The specific gravity is defined as the ratio of the weight 

of a volume of the substance to the weight of an equal volume of water. 

 

SG = weight of a volume of the substance/ weight of an equal volume of water 

Dimensionally, SG  =   [F]         [F]       =   1 

     [L]3              [L]3 

 

If the density of water, that is the mass of unit volume of water, is known, then if the specific 

gravity of some substance is determined, its density can be calculated from the following 

relationship: 

  = SG w 



where  (rho) is the density of the substance, SG is the specific gravity of the substance and 

w is the density of water. 

 

Perhaps the most important attribute of a dimensionless ratio, such as specific gravity, is that 

it gives an immediate sense of proportion. This sense of proportion is very important to food 

technologists as they are constantly making approximate mental calculations for which they 

must be able to maintain correct proportions. For example, if the specific gravity of a solid is 

known to be greater than 1 then that solid will sink in water. The fact that the specific gravity 

of iron is 7.88 makes the quantity more easily visualized than the equivalent statement that 

the density of iron is 7880 kg m-3.  

 

Another advantage of a dimensionless ratio is that it does not depend upon the units of 

measurement used, provided the units are consistent for each dimension. 

 

Dimensionless ratios are employed frequently in the study of fluid flow and heat flow. They 

may sometimes appear to be more complicated than specific gravity, but they are in the same 

way expressing ratios of the unknown to the known material or fact. These dimensionless 

ratios are then called dimensionless numbers and are often called after a prominent person 

who was associated with them, for example Reynolds number, Prandtl number, and Nusselt 

number; these will be explained in the appropriate section.  

 

When evaluating dimensionless ratios, all units must be kept consistent. For this purpose, 

conversion factors must be used where necessary. 

 

 

Precision of Measurement 

 

Every measurement necessarily carries a degree of precision, and it is a great advantage if the 

statement of the result of the measurement shows this precision. The statement of quantity 

should either itself imply the tolerance, or else the tolerances should be explicitly specified.  

 

For example, a quoted weight of 10.1 kg should mean that the weight lies between 10.05 and 

10.149 kg.  

Where there is doubt it is better to express the limits explicitly as 10.1 ± 0.05 kg. 

 

The temptation to refine measurements by the use of arithmetic must be resisted.  

For example, if the surface of a rectangular tank is measured as 4.18 m x 2.22 m and its depth 

estimated at 3 m, it is obviously unjustified to calculate its volume as 27.8388 m3 which is 

what arithmetic or an electronic calculator will give. A more reasonable answer would be 28 

m3. Multiplication of quantities in fact multiplies errors also. 

 

In process engineering, the degree of precision of statements and calculations should always 

be borne in mind. Every set of data has its least precise member and no amount of 

mathematics can improve on it. Only better measurement can do this. 

 

A large proportion of practical measurements are accurate only to about 1 part in 100. In 

some cases factors may well be no more accurate than 1 in 10, and in every calculation 

proper consideration must be given to the accuracy of the measurements. Electronic 

calculators and computers may work to eight figures or so, but all figures after the first few 


