
 

 Density of mercury   = 13,600kgm-3  

                  Z     = (2 x 100 x 103)/ (13,600 x 9.81) 

                           = 1.5m 

 

 

FLUID DYNAMICS 

 

 

In most processes fluids have to be moved so that the study of fluids in motion is important. 

Problems on the flow of fluids are solved by applying the principles of conservation of mass and 

energy. In any system, or in any part of any system, it must always be possible to write a mass 

balance and an energy balance. The motion of fluids can be described by writing appropriate 

mass and energy balances and these are the bases for the design of fluid handling equipment. 

 

 

Mass Balance 

 

Consider part of a flow system, such for example as that shown in Fig. 3.3. This consists of a 

continuous pipe that changes its diameter, passing into and out of a unit of processing plant, 

which is represented by a tank. The processing equipment might be, for example, a pasteurizing 

heat exchanger. Also in the system is a pump to provide the energy to move the fluid. 

  

 

 

 
Figure 3.3. Mass and energy balance in fluid flow. 

    (note: units for Ec and Ef are Jkg-1 ) 

 

 

In the flow system of Fig. 3.3 we can apply the law of conservation of mass to obtain a mass 

balance. Once the system is working steadily, and if there is no accumulation of fluid in any part 

the system, the quantity of fluid that goes in at section 1 must come out at section 2. If the area of 

the pipe at section 1 is A1, the velocity at this section, v1 and the fluid density 1, and if the 

corresponding values at section 2 are A2, V2, 2 the mass balance can be expressed as 

 



 1A1v1 = 2A2v2       (3.4) 

 

If the fluid is incompressible 1 = 2   

so in this case  

 A1v1 = A2v2       (3.5) 

 

Equation (3.5) is known as the continuity equation for liquids and is frequently used in solving 

flow problems. It can also be used in many cases of gas flow in which the change in pressure is 

very small compared with the system pressure, such as in many air-ducting systems, without any 

serious error. 

 

EXAMPLE 3.4. Velocities of flow 

Whole milk is flowing into a centrifuge through a full 5cm diameter pipe at a velocity of 0.22 

ms-1, and in the centrifuge it is separated into cream of specific gravity 1.01 and skim milk of 

specific gravity 1.04. Calculate the velocities of flow of milk and of the cream if they are 

discharged through 2cm diameter pipes. The specific gravity of whole milk is 1.035. 

 

From eqn. (3.4) 

 

 1A1v1  = 2A2v2 + 3A3v3 

 

where suffixes 1, 2, 3 denote respectively raw milk, skim milk and cream. Also, since volumes 

will be conserved, the total leaving volumes will equal the total entering volume and so 

 A1v1 = A2v2 + A3v3 and from this equation 

   

 v2  = (A1v1 - A3v3)/A2   (a) 

 

This expression can be substituted for v2 in the mass balance equation to give: 

 1A1v1  = 2A2(A1v1 – A3v3)/A2  + 3A3v3 

 1A1v1  = 2A1v1  - 2A3v3 + 3A3v3. 

 

So A1v1(1 - 2) = A3v3(3 - 2)   (b) 

 

From the known facts of the problem we have: 

 

  A1  = (/4) x (0.05)2 = 1.96 x 10-3m2 

 

  A2 = A3 = (/4) x (0.02)2  = 3.14 x 10-4m2 

   v1 =  0.22ms-1 

   1 = 1.035 x w ,  2 = 1.04 x w ,  3 = 1.01x w 

 

where w is the density of water. 

 

Substituting these values in eqn. (b) above we obtain: 

 

   -1.96 x 10–3 x 0.22 (0.005) = -3.14 x 10-4x v3 x (0.03) 



      

             so       v3 = 0.23ms-1 

 

Also from eqn. (a) we then have, substituting 0.23ms -1 for v3, 

 

               v2 = [(1.96 x 10-3 x 0.22) - (3.14 x 10 –4 x 0.23)] / 3.14 x 10-4  

                   

   = 1.1ms-1 

 

 

Energy Balance 

 

In addition to the mass balance, the other important quantity we must consider in the analysis of 

fluid flow, is the energy balance. Referring again to Fig. 3.3, we shall consider the changes in the 

total energy of unit mass of fluid, one kilogram, between section 1 and section 2. 

 

Firstly, there are the changes in the intrinsic energy of the fluid itself which include changes in: 

 (1) Potential energy. 

 (2) Kinetic energy. 

 (3) Pressure energy. 

Secondly, there may be energy interchange with the surroundings including: 

 (4) Energy lost to the surroundings due to friction. 

 (5) Mechanical energy added by pumps. 

 (6) Heat energy in heating or cooling the fluid. 

In the analysis of the energy balance, it must be remembered that energies are normally 

measured from a datum or reference level. Datum levels may be selected arbitrarily, but in most 

cases the choice of a convenient datum can be made readily with regard to the circumstances. 

 

Potential energy 

 

Fluid maintained above the datum level can perform work in returning to the datum level. The 

quantity of work it can perform is calculated from the product of the distance moved and the 

force resisting movement; in this case the force of gravity. This quantity of work is called the 

potential energy of the fluid. Thus the potential energy of 1 kg of fluid at a height of Z(m) above 

its datum is given by Ep, where: 

 

      Ep =Zg (J) 

 

Kinetic energy 

 

Fluid that is in motion can perform work in coming to rest. This is equal to the work required to 

bring a body from rest up to the same velocity, which can be calculated from the basic equation 

 

  v2 = 2as,  therefore s =  v2/2a, 

 



where v (ms–1) is the final velocity of the body, a (ms-2) is the acceleration and s (m) is the 

distance the body has moved. 

 

Also work done = W    = F x s, and from Newton's Second Law, for m kg of fluid 

 

  F = ma                          

 

and so  Ek = W =  mas  =  mav2/2a 

       = mv2/2 

 

The energy of motion, or kinetic energy, for 1 kg of fluid is therefore given by Ek where  

                        

                       Ek  = v2/2 (J) 

 

Pressure energy 

 

Fluids exert a pressure on their surroundings. If the volume of a fluid is decreased, the pressure 

exerts a force that must be overcome and so work must be done in compressing the fluid. 

Conversely, fluids under pressure can do work as the pressure is released. If the fluid is 

considered as being in a cylinder of cross-sectional area A(m2) and a piston is moved a distance L 

(m) by the fluid against the pressure P (Pa) the work done is PAL joules. The quantity of the 

fluid performing this work is AL (kg).  Therefore the pressure energy that can be obtained from 

1 kg of fluid (that is the work that can be done by this kg of fluid) is given by Er where 

 

  Er = PAL / AL 

      = P/ (J) 

 

Friction loss 

 

When a fluid moves through a pipe or through fittings, it encounters frictional resistance and 

energy can only come from energy contained in the fluid and so frictional losses provide a drain 

on the energy resources of the fluid. The actual magnitude of the losses depends upon the nature 

of the flow and of the system through which the flow takes place. In the system of Fig. 3.3, let 

the energy lost by 1 kg fluid between section 1 and section 2, due to friction, be equal to Ef (J). 

 

Mechanical energy 

 

If there is a machine putting energy into the fluid stream, such as a pump as in the system of Fig. 

3.3, the mechanical energy added by the pump per kg of fluid must be taken into account. Let the 

pump energy added to 1 kg fluid be Ec (J). In some cases a machine may extract energy from the 

fluid, such as in the case of a water turbine. 

 

Other effects 

 

Heat might be added or subtracted in heating or cooling processes, in which case the mechanical 

equivalent of this heat would require to be included in the balance. Compressibility terms might 



also occur, particularly with gases, but when dealing with low pressures only they can usually be 

ignored. 

 

For the present let us assume that the only energy terms to be considered are Ep, Ek, Er, Ef, Ec. 

 

 

Bernouilli's Equation 

 

We are now in a position to write the energy balance for the fluid between section 1 and section 

2 of Fig. 3.3. The total energy of one kg of fluid entering at section 1 is equal to the total energy 

of one kg of fluid leaving at section 2, less the energy added by the pump, plus friction energy 

lost in travelling between the two sections. Using the subscripts 1 and 2 to denote conditions at 

section 1 or section 2, respectively, we can write 

 

  Ep1 + Ek1 + Er1 = Ep2 + Ek2 + Er2 + Ef  -Ec.    (3.6.)  

                             

         Therefore Z1g + v1
2/2 + P1/1  = Z2g + v2

2/2  + P2 /2 + Ef – Ec.         (3.7) 

 

In the special case where no mechanical energy is added and for a frictionless fluid,  

  Ec = Ef = 0, and we have 

 

  Z1 g + v1
2/2 + P1 /1 = Z2 g + v2

2
 /2 + P2 /2    (3.8) 

 

and since this is true for any sections of the pipe the equation can also be written 

 

  Zg + v2/2 + P/ = k               (3.9) 

where k is a constant. 

 

Equation (3.9) is known as Bernouilli's equation. First discovered by the Swiss mathematician 

Bernouilli in 1738, it is one of the foundations of fluid mechanics. It is a mathematical 

expression, for fluid flow, of the principle of conservation of energy and it covers many 

situations of practical importance. 

 

Application of the equations of continuity, eqn. (3.4) or eqn. (3.5), which represent the mass 

balance, and eqn. (3.7) or eqn. (3.9), which represent the energy balance, are the basis for the 

solution of many flow problems for fluids. In fact much of the remainder of this chapter will be 

concerned with applying one or another aspect of these equations. 

 

The Bernouilli equation is of sufficient importance to deserve some further discussion. In the 

form in which it has been written in eqn. (3.9) it will be noticed that the various quantities are in 

terms of energies per unit mass of the fluid flowing. If the density of the fluid flowing multiplies 

both sides of the equation, then we have pressure terms and the equation becomes: 

   

  Zg + v2/2 + P = k'       (3.10) 

 

and the respective terms are known as the potential head pressure, the velocity pressure and the 



static pressure. 

 

On the other hand, if the equation is divided by the acceleration due to gravity, g, then we have 

an expression in terms of the head of the fluid flowing and the equation becomes: 

 

  Z + v2/2g + P/g  = k''       (3.11) 

 

and the respective terms are known as the potential head, the velocity head and the pressure 

head. The most convenient form for the equation is chosen for each particular case, but it is 

important to be consistent having made a choice. 

 

If there is a constriction in a pipe and the static pressures are measured upstream or downstream 

of the constriction and in the constriction itself, then the Bernouilli equation can be used to 

calculate the rate of flow of the fluid in the pipe. This assumes that the flow areas of the pipe and 

in the constriction are known. Consider the case in which a fluid is flowing through a horizontal 

pipe of cross-sectional area A1 and then it passes to a section of the pipe in which the area is 

reduced to A2. From the continuity equation [eqn. (3.5)] assuming that the fluid is 

incompressible: 

 

    A1v1 = A2v2 

and so 

    v2  = v1A1 /A2 

 

Since the pipe is horizontal 

 

  Z1 = Z2 

Substituting in eqn. (3.8) 

 

 v1 
2
 /2 + P1 /1  =  v1 

2
 A1

2
 /(2 A2

2) + P2 /2 

 

and since 1 = 2 as it is the same fluid throughout and it is incompressible, 

 

    P1 - P2  = 1 v1 
2[(A1

2
 /A2

2) –1]/2      (3.12) 

 

From eqn. (3.12), knowing P1, P2, A1, A2, 1, the unknown velocity in the pipe, v1, can be 

calculated. 

 

Another application of the Bernouilli equation is to calculate the rate of flow from a nozzle with 

a known pressure differential. Consider a nozzle placed in the side of a tank in which the surface 

of the fluid in the tank is Z ft above the centre line of the nozzle as illustrated in Fig. 3.4. 

 

 

 



 

Figure 3.4. Flow from a nozzle. 

 

Take the datum as the centre of the nozzle. The velocity of the fluid entering the nozzle is 

approximately zero, as the tank is large compared with the nozzle. The pressure of the fluid 

entering the nozzle is P1 and the density of the fluid 1. The velocity of the fluid flowing from 

the nozzle is v2 and the pressure at the nozzle exit is 0 as the nozzle is discharging into air at the 

datum pressure. There is no change in potential energy as the fluid enters and leaves the nozzle at 

the same level. Writing the Bernouilli equation for fluid passing through the nozzle: 

 

          0 + 0 + P1 /1  = 0 + v2
2/2 + 0 

                                                 v2
2   = 2 P1 /1 

                                                              _______  

                  v2     =  (2P1 /1 ) 

 

   but from Equation 3.3 

 

                                              P1 / 1 = gZ 

 

    (where Z is the head of fluid above the nozzle) 

                                                                 ____  

                        therefore             v2    =  (2 gZ)       (3.13) 

 

EXAMPLE 3.5. Pressure in a pipe 

Water flows at the rate of 0.4m3 min-1 in a 7.5cm diameter pipe at a pressure of 70 kPa. If the 

pipe reduces to 5cm diameter calculate the new pressure in the pipe.  

 

Density of water is l000kgm -3. 

  Flow rate of water = 0.4 m3 min -1   = 0.4/60 m3 s-1. 

 

  Area of 7.5cm diameter pipe    = (/4)D2 



       = (/4)(0.075)2 

        = 4.42 x 10-3m2. 

So velocity of flow in 7.5cm diameter pipe, 

 v1  = (0.4/60)/(4.42 x 10-3)  = 1.51 ms-1 

 

                     Area of 5-cm diameter pipe      =  (/4)(0.05)2 

                                                                       = 1.96 x 10-3 m2 

 

 and so velocity of flow in 5cm diameter pipe, 

   v2  =  (0.4/60)/(1.96 x 10-3) =  3.4 m s-1 

 

Now 

                    Z1g + v1
2/2 + P1 /1    = Z2g + v2

2
 /2 + P2/2 

   

and so 0 + (1.51)2/2 + 70 x 103/1000  = 0 + (3.4)2/2 + P2/1000  

          0 + 1.1 + 70  = 0 + 5.8 + P2/1000 

               P2 /1000  = (71.1 - 5.8)   =  65.3 

      P2 =  65.3kPa 

 

EXAMPLE 3.6. Flow rate of olive oil 

Olive oil of specific gravity 0.92 is flowing in a pipe of 2cm diameter. Calculate the flow rate of 

the olive oil, if an orifice constriction is placed in the pipe so that the diameter of the pipe in the 

constriction is reduced to 1.2cm, and if the measured pressure difference between the clear pipe 

and the most constricted part of the pipe is 8cm of water. 

Diameter of pipe, in clear section, equals 2cm and at constriction equals 1.2cm. 

 

                        A1/A2 = (D1/D2)
 2  = (2/1.2) 2 

          Differential head  = 8 cm water. 

                   Differential pressure = Zg 

         = 0.08 x 1000 x 9.81  

     = 785 Pa. 

substituting in eqn. (3.12)  P1 - P2   = 1 v1 
2[(A1

2
 /A2

2 ) –1]/2 

 

    785  = 0.92 x 1000 x v2 [(2/1.2)4 - 1 ] /2  

   

    v2 = 785/3091 

                                    v  = 0.5ms-1 

 

EXAMPLE 3.7. Mass flow rate from a tank 

The level of water in a storage tank is 4.7m above the exit pipe. The tank is at atmospheric 

pressure and the exit pipe discharges into the air. If the diameter of the exit pipe is 1.2cm what is 

the mass rate of flow through this pipe? 

 

From eqn. (3.13)                                                    

   v =  (2gZ)   

      =  (2 x 9.81 x 4.7) 



             =   9.6ms-1 

Now area of pipe 

 

                            A  = (/4)D2       

                                                = (/4) x (0.012)2 

                                       =  1.13 x 10-4m2  

Volumetric flow rate, Av  = 1.13 x 10-4m2 x 9.6ms-1 

       = 1.13 x 10-4 x 9.6m3s-1 

      =  1.08 x 10-3 m3s-1                            

Mass flow rate,  Av  = 1000 kgm-3 x 1.08 x 10-3m3s-1 

       = 1.08kgs-1 

 

EXAMPLE 3.8. Pump horsepower 

Water is raised from a reservoir up 35m to a storage tank through a 7.5cm diameter pipe. If it is 

required to raise 1.6 cubic metres of water per minute, calculate the horsepower input to a pump 

assuming that the pump is 100% efficient and that there is no friction loss in the pipe.  

1 Horsepower = 0.746 kW. 

 

Volume of flow  

 V  = 1.6m3min-1 = 1.6/60m3s-1   = 2.7 x 10-2m3s-1 

Area of pipe, 

 A     = (/4) x (0.075)2   = 4.42 x 10-3m2 

 

Velocity in pipe           

 v  = 2.7 x 10-2/(4.42 x 10-3)   = 6ms-1 

 

And the mechanical energy  = potential energy + kinetic energy 

 Ec            = Zg + v2/2 

                 = 35 x 9.81 + 62/2 

                 = 343.4 + 18 

      = 361.4Jkg-1 

 

Therefore total power required  = Ec x mass rate of flow 

      = EcV    

       = 361.4 x 2.7 x 10-2 x 1000Js-1  

       =  9758 Js-1 

and, since     l h.p.      = 0.746kW  = 7.46 x 102Js -1, 

        required power   =  13  h.p. 

 

 

VISCOSITY 

 

 

Viscosity is that property of a fluid that gives rise to forces that resist the relative movement of 

adjacent layers in the fluid. Viscous forces are of the same character as shear forces in solids and 

they arise from forces that exist between the molecules. 


