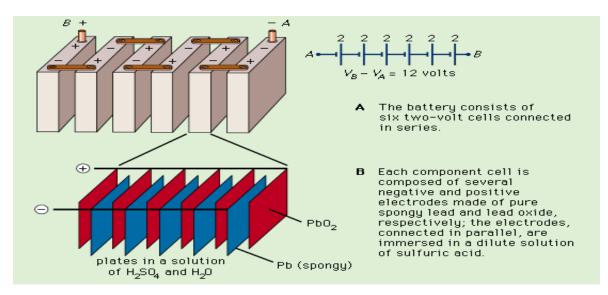


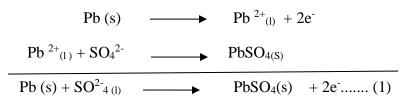
SNS COLLEGE OF TECHNOLOGY


(An Autonomous Institution)

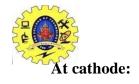
Construction

A lead storage battery consists of 3 to 6 voltaic cells connected in series. In each cell, lead acts as anode and lead dioxide (PbO₂) acts as cathode .

Various plates are separated from the adjacent one by insulator like rubber. Anodes and cathodes are immersed in 20 to 21 % dil. H_2SO_4 having a density of 1.3 gm/ml. The cell representation is given below.



 $Pb \hspace{0.1in} |PbSO_4|| \hspace{0.1in} H_2SO_{4\,(L)} \hspace{0.1in} |PbO_2|Pb$


Working (Discharging)

When the storage cell is supplying electricity, lead is oxidized to Pb^{2+} ions and $PbSO_4$ is formed at anode. At cathode, PbO_2 gains the liberated electrons and gets reduced to Pb^{2+} and $PbSO_4$ is formed.

At anode:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

$$PbO_{2(s)} + 2e^{-} + 4H^{+} (1) \longrightarrow Pb^{2+}(1) + 2H_2O$$

$$Pb^{2+}(1) + SO^{2-}(1) \longrightarrow PbSO_{4(s)}$$

$$PbO_{2(s)} + 4H^{+}(1) + SO^{2-}(1) + 2e^{-} \longrightarrow PbSO_{4(s)} + 2H_2O(s) \dots(2)$$

Overall cell reaction during (discharging) use (1) + (2)

 $Pb + PbO_2 + 2H_2SO_4 \longrightarrow 2PbSO_{4(S)} + 2H_2O + Energy$

At the time of discharging process, $PbSO_4$ is deposited at both the electrodes and H_2SO_4 is consumed. As a result, the concentration of H_2SO_4 decreases gradually.

Recharging

The cell is recharged when the density of H_2SO_4 becomes below 1.2 gm/ml. It can be done by applying external electricity across the electrodes. The following reaction will take place during recharging process:

 $2PbSO_{4(S)} + 2H_2O + Energy \quad charging \qquad Pb + PbO_2 + 4H_2SO_4$

Hence, the recharging involves exactly the reverse process of the normal cell reaction.

Note:

Decrease in density Decrease in density of dil. H_2SO_4 can be measured with the help of hydrometer.

Uses

It is used in automobiles such as cars, buses, etc.

It is also used in gas engine ignition, telephone exchanger, hospitals, power stations, etc.

Advantages of lead acid battery

It can be constructed easily.

It produces high voltage.

It acts as effectively even at low temperature.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Self-discharge is very low when compared to all other batteries.

Disadvantages

Recycling of this battery causes environmental pollution.

Mechanical strain and normal pumping reduces battery capacity.

Fill in the Blanks

Type of battery which can be only used once_____

Type of battery which can be recharged_____

On charging secondary batteries, the reaction is _____

Thermal plants have more efficiency than fuel cell (True/False_____

Most commonly used battery in automobiles & inverters_____

Secondary cells are charged by passing current through it in the ______direction

Grid of lead packed with _____ as cathode in lead storage battery

Electrolyte used in lead storage batteries_____

Another name of dry cell_____

(LEAD OXIDE, REVERSED, LEAD ACID BATTERY, LECLANCHE, OPPOSITE, PRIMARY, SULPHURIC ACID, FALSE, SECONDARY)