Computer Graphics
Chapter Three

Faculty of Artificial Intelligence
Autonomous Systems Department

Content

Coordinate Reference Frames :
Specifying a Two-Dimensional World-:
Coordinate Reference Frame in :
. OpenGL

:3. OpenGL Point Functions

:4. OpenGL Line Functions

:5. OpenGL Curve Functions

(75 Fill-Area Primitives
8

CIIQN":IIIII

:7. Polygon Fill Areas
:8. OpenGL Polygon Fill-Area Functions. :

Definitions

III

Describing various picture components of a virtual
: scene is one of the first things needed when
generated a computer picture .

*To provide the shape or structure of the individual
objects

*To provide their coordinate locations in the scene

-+ We need: . .

-+ 1) graphics output primitive that are functions in

: CG'API describe such picture components

X ZL.Geometrtc primitives to define the geometry of
objects such as Lines, Triangles, Quadrics, Conic
sections, Curved surfaces,

Coordinate Reference Eranes

* The coordinate positions are stored in the scene
description alongside the information about the
objects, such as their color and their coordinate
extents.

+ Coordinate extents are the lowest and highest x; :
and zvalues for each object. :

* A set of coordinate extents (s also described as a
bounding box for an object.

* For a two-dimensional figure, the coordinate
extents are sometimes called an object’s
bounding rectangle.

Soreen Coordinates

-+ Locations on a video monitor are referenced in integer :
: screen coordinates, which correspond to the pixel :
: positions in the frame buffer. .

." ‘

VN W o n

1
(0

() 1 o A -4 5 :;
FIGURE 1

Pixel positions referenced with respect
to the lower-left corner of a screen
Area,

Screen Coordinates

:+ Given the low-level procedure of the form
. setPixel (x, y);

:+» This procedure stores the current color

. setting into the frame buffer at integer
position (x, y), relative to the selected
position of the screen-coordinate origin.

o
..

Screen Coordinates

*To retrieve the current frame-buffer setting for a
pixel location, use the following low-level

function for obtaining a frame-buffer color value: :
getPixel (x, y, color); :

*In this function, parameter color receives an :
integer value corresponding to the combined red, :
green, and blue (RGB) bit codes stored for the '
specified pixel at position (x,)).

Specifying A Two-Dimensional World-Coordinate
Reference Frame 1n OpenGL

OO

To set up any two-dimensional Cartesian
: reference frame, use the function gluOrtho2D.

'« This function specifies an orthogonal projection,
. we need to ensure that the coordinate values are
placed in the OpenGL projection matrix.

‘« We could also assign the identity matrix as the
projection matrix before defining the world-
coordinate range.

Specifying A Two-Dimensional World-Coordinate
Reference Frame 1n OpenGL

..

-» In the two-dimensional examples, define the

coordinate frame for the screen display window
with the following:

glMatrixMode (GL PROJECTION) ;
glLoadIdentity ()

gluOrtho2D (xmin, xmax, ymin, ymax);

The display window is referenced by (xmin, ymin)g
. coordinates at the lower-left corner, and by '

(xmax, ymax) coordinates at the upper-right
corner, as shown in Figure 2.

o
lll

J“f., et)

:{o g1
A /\.»11 \J .
B ;{';-'-")_ ‘?/

Display
Window

FIGURE 2
Weric-coordinate limits for 2 dispiay
windos, as speafied in the
g10rtho2D function,

L EA R AN AN SN TS AN ENNINIANANARNAN N E AR RN E R AR RN
LA A AR SRR R R R R R R R RN RRRRRERRRRRRRRR R RNERRERHN.]

..'..'..I.I.II'lI'I......'Ill.l.II...III.II.I..II.I..I.III...IIII'II.‘B..

OpenGl Point Functions

: » To state the coordinate values for a single
position, use the OpenGL function :
glVertex* ();

: » The asterisk (*) suffix codes are used in this

- function to identify the spatial dimension, the :
numerical data type to be used for the coordinate:
values, and a possible vector form for the '
coordinate specification.

.
ll

OpenGl Point Functions

-+ Calls to glVertex functions must be placed between a
. glBegin function and a glEnd function.

The argument of the glBegin function is used to identify
: the kind of geometric output primitive that is to be
displayed, and glEnd takes no arguments.

'+ For point plotting, the argument of the glBegin function is
the symbolic constant GL_POINTS. :

* Thus, the form for an OpenGL specification of a point
position s:

glBegin (GL POINTS) ;
glVertex* ();
glEnd ()

OpenGl Point Functions

« Coordinate positions in OpenGL can be given in two,
three, or four dimensions.

* We use a suffix value of 2, 3, or 4 on the glVertex
function to indicate the dimensionality of a coordinate
position.

« A four-dimensional specification indicates a
homogeneous-coordinate representation, where the :
fourth coordinate parameter his a scaling factor for the :
Cartesian-coordinate values. :

« Homogeneous-coordinate representations are useful
for expressing transformation operations in Matrix form. :

OpenGl Point Functions

-» Because OpenGL treats two-dimensions as a special

- case of three dimensions, any (x, J) coordinate
specification is equivalent to a three-dimensional
specification of (x, y; 0).

We need to specify which data type to be used for the§
: numerical value specifications of the coordinates. :

:+ This is accomplished with a second suffix code on the
. glVertex function.

-+ Suffix codes for specifying a numerical data type are i
- (integer), s (short), f (float), and d (double). ‘

OpenGl Point Functions
:+ Finally, the coordinate values can be listed :
. explicitly in the glVertex function, or a single
argument can be used that references a
coordinate position as an array.

‘s If we use an array specification for a coordinate
position, we need to append v (for “vector”) as a :
third suffix code. :

OpenGl Point Functions

:» In this example, three equally spaced points are
plotted along a two dimensional, straight-line :
path, where coordinates are given as integer patirs::

glBegin (GL POINTS) ; :
glVertex2i (50, 100);
glVertex2i (75, 150);
glVertex2i (100, 200) ;

glEnd ();

II

FIGURE 3
glBegin (GL_POINTS).

‘..II.I‘l......ll..I...Q...OI....I..I......II
...lII.I........II.I.....I..I..l...‘..l....l.

I...'..III..III.l..l.......ll.l.....lll.III.I..IIIIIII'III....IIIIII.%,.

OpenGl Point Functions

..

-+ Alternatively, we could use the coordinate
. values for the preceding polints tn arrays as:
int pointl [] = {50, 100};
int point2 [] = {75, 150};
: int point3 [] = {100, 200};
-» and call the OpenGL functions for plotting
. the three points as
glBegin (GL POINTS) ;
glVertex2iv (pointl) ;
glVertex2iv (point2);
glVertex2iv (point3);
glEnd ();

%IBIIIUIIUIIIDD..IOUI..I.IHMIIIIJIII'.I.'I‘III‘.Ill..l’.'ll'l..Il'.'.i,.l!l.

OpenGl Line Functions

..

» Graphic packages normally provide a function for :
specifylng one or more straight-line segments, where :
each line’segment is defined by two endpoint -
coordinate positions.

« For example, if we have five coordinate positions,
labelled p1 through p5, and each position is
represented by a ftwo-dimensional array, then the
following code could create the display shown in
Flgure 4?a):

glBegin (GL LINES) ;
glVertex2iv (pl);
glVertex2iv (p2) ;
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glEnd ();

FIGURE 4
mmwmuwhmmgwd&emmwmwmﬁ

lines generated with the primiive line constant GL,__LINES. (b) A poyline gensrated with
GL_LINE_STRIP. (c} A dlosed polyline generated with GL _LINE_LOOP.

S AR AN R AT S SN SRR NN NI I NI RNARNANAE AR RN E R R R R RS
...l.l.I.......I..'I.......II...I.....III.I..

'.......I..I'l..l'-.l.......IlIlI....IllllII.I...IIII.I'IIII.I.I...II.’BI

OpenGl Line Functions

..

.+ Using the OpenGL primitive constant
. GL_LINE_STRIP, we obtain a polyline. :
-+ Using the same five coordinate positions as in :
. the previous example, we obtain the display in :
Figure 4(b) with the code :
glBegin (GL LINE STRIP) ;
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5) ;
glEnd ();

--

OpenGl Line Functions

III

§- The third OpenGL line primitive is GL_LINE_LOOP, which
. produces a closed polyline.

-+ Figure 4(c) shows the display of our endpoint list when we
- select this line option, using the code :
glBegin (GL_LINE LOOP) ;
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glEnd ()

OpenGl Curve Functions

...

-+ Routines for generating basic curves, such as circles :
. and ellipses, are not included as primitive functions :
in the OpenGL core library. :

‘= But this library does contain functions for
displaying B'ezier splines, which are polynomials
that are defined with a discrete point set.

» And the OpenGL Utility (GLU) library has routines
for three-dimensional quadrics, such as spheres and :
cylinders, as well as routines for producing rational :
B-splines, which are a general class of splines that
include the simpler B'ezier curves.

OpenGl Curve Functions

‘+ Using rational B-splines, we can display circles,
. ellipses, and other two-dimensional quadrics.

-+ |n addition, there are routines in the OpenGL

. Utility Toolkit (GLUT) that we can use to display
some three-dimensional quadrics, such as spheres:
and cones, and some other shapes. :

:» However, all these routines are more involved
- than the basic primitives we introduce in this
chapter.

~
a
A A R R R R R R R AR R R R R R R R R R R R R R R RN RN

{s) {b)

FIGURE §

Aciraudyr ¥ approimated with
{b} sx ke segents, and

) (<) twehe line segumens.

'..II.I‘l......ll..I.......C.O...I..I..I....I
.....I..........IIII.....II...._.I..I..I'.....

I....I.II'.I'.'.II..I.'....II.IlII..III.lIIlll..ll.ll.'III.I.IIII.II.’;.

Fill-Area Primitives

:» Another useful construct, besides points,
straight-line segments, and curves, for
describing components of a picture is an
area that is filled with some solid color or
pattern.

* A picture component of this type is
typically referred to as a fill area or a
filled area.

e B ST S S S A ot B gt b e =<
ek e e wh b Nt - NN e oy N s Nt N Nt

FIGURE 6
Sobd-color fill areas specified with
vanous boundanies. (3) A drcutar il
region. (B) A fill area bounded by 2
{a) (b)

tiosed potfine. {C) A filled area
specified with an iregqular cunved
boundary.

(¢}

L E AR FAN AR S AN SRR NN NA N AR AR R AR SRR R R EES
LA R AR R R R R RRERRERRERERSREREREERERRERRRRRRREERRERERE.]

II..IIIll.l.ll.ll..'.......Illlll......'ll"l....II.II'."I..IIII.'I.IA,..

AR RN R A AR A R R R R R RN RS AR RN AR RN A AT RN NN EE R RN AR AR AR AR AR AR S ST SRR R AR RA AR RN R RN
————————— e
¥

L W

FIGURE 7

Wire-frame representation for a
¢ylinder, showing only the front
(visible) faces of the polygon mesh
used to approximate the surfaces.

....II..I..I'.II.III........II.I.III.I...IIII....III.IIIIII.I.I.III'I&Q.

LA R F AN AN S SRS SR N I AR AN AN E AR RN E R R R R R
.....l'........ll...'....l...lIl....l........

Fill-Area Primitives

...

:» Objects described with a set of polygon
surface patches are usually referred to as
standard graphics objects, or just :
graphics objects.

Polygon Fill Areas

:» Mathematically defined, a polygon is a plane

. figure specified by a set of three or more
coordinate positions, called vertices, that are :
connected in sequence by straight-line segments, :
called the edges or sides of the polygon. '

Examples of polygons include triangles,
. rectangles, octagons, and decagons.

Polygon Fill Areas

« Sometimes, any plane figure with a closed- :
polyline boundary is alluded to as a polygon, and :
one with no crossing edges s referred to as a :
standard polygon or a simple polygon.

» In an effort to avoid ambiguous object references, :
we will use the term polygon to refer only to :
those planar shapes that have a closed-polyline
boundary and no edge crossings.

OpenGL Polygon Fill-Area Functions

B R B R B BN R R NS B R EEDEEEBEESESSE RS R EEDEDERBEE-RSNSSSESESEDEEEESEEESE SRR SR EDEDEDEBEDEDESEEEREEEREEEERNRNEDNR.)

« With one exception, the OpenGL procedures forg
S ecifi/)ing fill polygons are similar to those for
escribing a point or a polyline.

« A glVertex function is used to input the
coordinates for a single polygon vertex, and a
complete polygon is described with a list of
vertices placed between a glBegin/glEnd pair.

* However, there is one additional function that
we can use for displaying a rectangle that has
an entirely different format.

OpenGL Polygon Fill-Area Functions

ll

« By default, a polygoninterior is displayed in a solid color,
determined by the current color settings.

» As options, we can fill a polygon with a pattern and we can :

display polygon edges as line borders around the interior
fill.

« There are six different symbolic constants that we can use
as the argument in the glBegin function to describe
polygon fill areas.

* These six primitive constants allow us to display a single
fill polygon, a set of unconnected fill polygons, or a set of
connected fill polygons.

OpenGL Polygon Fill-Area Functions

III

‘s In OpenGlL, a fill area must be specified as a
. convex polygon.

:* Thus, a vertex list for a fill polygon must :
© contain at least three vertices, there can be no:
crossing edges, and all interior angles for the :
polygon must be less than 180e. '

e R A N A NS R R R RN R R R R R R RN N R R R RS RN N RN ER RN EE D

OpenGL Polygon Fill-Area Functions

:* Because graphics displays often include rectangular fill areas,

- OpenGL provides a special rectangle function that directly

- accepts vertex specifications in the xy plane. :

:* In some implementations of OpenGlL, the following routine can :

. be more efticient than generating a fill rectangle using :
glVertex specifications:

- ?lRect* (x1, v1., ®2, v2):

-+ One corner of this rectangle is at coordinate position (x1, y1),

- and the opposite corner of the rectangle is at position (x2,)2).

:» Suffix codes for glRect specify the coordinate data type and

- whether coordinates are to be expressed as array elements.

<= These codes are i (for integer), s (for short), f (for float), d (for
double), and v (for vector). The rectangle is displayed with
edges parallel to the xy coordinate axes.

OpenGL Polygon Fill-Area Functions

:+ As an example, the following statement defines
the square shown in Figure 21:
glRecti (200, 100, 50, 250);

« |f we put the coordinate values for this rectangle

into arrays, we can generate the same square with :
the following code: :

int vertexl [] = {200, 100};
int vertex2 [] = {50, 250};
glRectiv (vertexl, vertex2);

OpenGL Polygon Fill-Area Functions

14

250 -

'

200 +

L}

150 4

100 5

)

50 -

1

1 FIGURE 21
500 100 150 200 The display of a square fill area using the g1Rect function.

S EARFANAAN TS S EEN AN RNAN AR N AR NS R R R R R
S B URERERERES AR EEEEAESSS R AR EENENEESERERRRERERRERNSED

.I'I'....Il.II..I.......I..III.I.I.I....II'.'....I...".III.I.II.'I"‘,..

OpenGL Polygon Fill-Area Functions

ll

-+ Each of the other six OpenGL polygon fill

. primitives is specified with a symbolic :
constant in the glBegin function, along with :
a a list of glVertex commands. :

- With the OpenGL primitive constant
. GL_POLYGON, we can display a single :
polygon fill area such as that shown in Figure :

22(a).

<
ll

OpenGL Polygon Fill-Area Functions

— — A\ S e

o ™ pe s

(%3)

FIGURE 22

Drplaytng dolypon S5 e wang 3 52 of sbt veriee pooions U A singie ot 2oigon B 2 Qmeciad wih
e protn oot GL_TOLYGON (3 Teo sncormected varghes puoectard it CL_ TRIASCLES

&) 5o conmeiad b s it OL_TRIANGLE STIIP. & four monecid sunghes geneciad
w8 GL_TRIANGLE FaN

FA A AR LB R R R RERSERERARRRRR SR RRRRRERERERRRERERERSREDSR ™

WIS S e s NE oo NN RERERERNEUERERRERERRRRERERRDRRRY

9

OpenGL Polygon Fill-Area Functions

..

-+ For this example, we assume that we have a list of :

: six points, labeled p1 through p6, specifying two- :

dimensional polygon vertex positions in a :

- counterclockwise ordering. :

-+ Each of the points is represented as an array of (x, :

y) coordinate values: :

glBegin (GL POLYGON) ;
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p#6) ;
glEnd ();

OpenGL Polygon Fill-Area Functions

..

.+ If we reorder the vertex list and change the

primitive constant in the previous code
example to GL_TRIANGLES, we obtain the
twobseparated triangle fill areas in Figure
22(b):
glBegin (GL TRIANGLES) ;
glVertex2iv (pl);
glVertex2iv (p2) ;
glVertex2iv (p#6) ;
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glEnd ();

II

OpenGL Polygon Fill-Area Functions

..

B%/ reordering the vertex list once more and
: anging the primitive constant to :
GL_ TRIANGLE STRIP, we can display the set :
of connected trlangles shown in Figure 22(c): :
glBegin (GL TRIANGLE STRIP) ;
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);
glEnd ();

--

OpenGL Polygon Fill-Area Functions

..

« Another way to generate a set of connected triangles :
ls to use the “fan” approach illustrated in Figure 22(d), :
where all triangles share a common vertex. :

« We obtain this arrangement of triangles using the
primitive constant GL_TRIANGLE_FAN and the
original ordering of our six vertices:

glBegin (GL TRIANGLE FAN) ;
glVertex2iv (pl);
glVertex2iv (p23;
glVertex2iv (p3
glVertex2iv (p4);
glVertex2iv (p5;;
glVertex2iv (p6
glEnd ()’

OpenGL Polygon Fill-Area Functions
:+ Besides the primitive functions for triangles and
a general polygon, OpenGL provides for the
specifications of two types of quadrilaterals

(four-sided polygons).

o

FIGURE 22

Unplapty Quedrited W wess yeg
| ool aght ke postens 4 Yoo
|3 unConteced Quaibimed eesciud
| oL QDS B Tvee

crvedns pudlaeal greutd
| oL _QGAD_STRI? (L]

FA A AR LB R R RRERRRRRRRR Rl RRERRRRR Rl R R R R ERERER ™

LTS S S0 S NN RRONNSeESERERERERNRNSNERERRRERRRRREBRRREDPRRREY

5

OpenGL Polygon Fill-Area Functions

« With the GL_QUADS primitive constant and the
following list of eight vertices, specified as two-
dimensional coordinate arrays, we can generate the
display shown in Figure 23(a):

glBegin (GL_QUADS) ;
glVertex2iv (pl) ;
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6) ;
glVertex2iv (p7);
glVertex2iv (p8);
glEnd ()

OpenGL Polygon Flll —Area Punctlons

ﬂﬂ

quadrilateral code example and changing the ;
primitive constant to GL_QUAD_STRIP, we can obtain :
the set of connected quadrilaterals shown in Figure
23(b):
glBegin (GL QUAD STRIP) ;

glVertex2iv (pl) ;

glVertex2iv (p2);

glVertex2iv (p4):;

glVertex2iv (p3):;

glVertex2iv (p5);

glVertex2iv (p6) ;

glVertex2iv (p8);

glVertex2iv (p7)

glEnd ()

