

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

Unit Normal:
A unit normal to the given surface
$$\varphi$$
 at
the point is $\underline{\nabla \varphi}_{1 \nabla \varphi 1}$
Directional Derivative:
The directional derivative of φ in the direction
 \overrightarrow{a} is given by,
 $\nabla \varphi \cdot \overrightarrow{a}_{1 \overline{a} 1}$ (or) $\nabla \varphi \cdot \overrightarrow{n}$ where $\overrightarrow{n} = \overrightarrow{a}_{1 \overline{a} 1}$
The directional derivative is maximum in
the direction of the normal to the given surface.
Its maximum value is $|\nabla \varphi|$.
Angle between two surfaces:
 $\boxed{\cos \theta = \nabla \varphi_1 \cdot \nabla \varphi_2}_{1 \nabla \varphi_1 | 1 \nabla \varphi_2|}$
Note:
If the surfaces cut orthogonally then,
 $\boxed{\nabla \varphi_1 \cdot \nabla \varphi_2 = 0}$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

Problems : if is an invitable to an orthogen the out we that (1)
(1) Find a unit normal to the surface $x^2y + \partial xz = 4$
at (2,-2,3)
$soln: \varphi: x^2y + 2xz - 4$
$\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{R} \frac{\partial \varphi}{\partial z}$
$= \vec{i} \frac{\partial}{\partial x} (x^2y + 2xz - 4) + \vec{j} \frac{\partial}{\partial y} (x^2y + 2xz - 4)$
TK 37
$=\vec{i}(axy+az)+\vec{j}(x^{2})+\vec{k}(ax)$
$\nabla \varphi_{(2, -2, 3)} = \vec{i} (-8+6) + \vec{j} (4) + \vec{k} (4)$
(2, -2, 3) = -2i + 4j + 4k
$ \nabla \varphi = \sqrt{4 + 16 + 16} = \sqrt{36} = 6$
Whit normal to the given surface at (2, -2, 3)
$= \frac{\nabla \varphi}{ \nabla \varphi } = \frac{-2\vec{i} + 4\vec{j} + 4\vec{k}}{6}$
1701 6
$=\frac{1}{3}(-\vec{i}+2\vec{j}+2\vec{k})$
(2) Find the unit vector normal to $x^2 - y^2 + z = 2$ at
(2) Find the unit vector normal to $x = y + z = z$ at $(1, -1, z)$.
Soln: $\nabla \phi = 2\vec{i} + 2\vec{j} + \vec{k}$
$\frac{\sqrt{\psi}}{ \nabla \psi } = \frac{2(1+\alpha)+\kappa}{3}$
3 Find the unit vector normal to $\chi^2 + \chi y + \chi^2 = 4$ at
(1)-1,2) - $(2 - 1)^2$
$\frac{1}{2016} = \vec{i} + \vec{j} + 4\vec{k}$
$\overline{1 \nabla \varphi} = \overline{\sqrt{18}}$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(1) Find the directional desivative of the function

$$x^{2} + axy$$
 at $(1, -1, 3)$ in the direction, $\vec{1} + a\vec{j} + a\vec{k}$
soln:
 $\varphi = x^{2} + axy$
 $\forall \varphi = \vec{1} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$
 $= \vec{1} \frac{\partial}{\partial x} (x^{2} + axy) + \vec{j} \frac{\partial}{\partial y} (x^{2} + axy) + \frac{\partial}{\partial z} (x^{2} + ax) + \frac{\partial}$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(*) What is the greatest rate of increase of

$$q = xyz^{2}$$
 at $(1,0,3)$?
 $restrictions$
Let $\varphi = (xyz^{2})$
 $T\varphi = i\frac{\partial \varphi}{\partial x} + j\frac{\partial \varphi}{\partial y} + k\frac{\partial \varphi}{\partial z}$
 $= i\frac{\partial}{\partial x}(xyz^{2}) + j\frac{\partial}{\partial y}(xyz^{2}) + k\frac{\partial}{\partial z}(xyz^{2})$
 $= i(yz^{2}) + j(xz^{2}) + k(axyz)$
 $\nabla \varphi (1,0,3) = i(0) + j(q) + k(0)$
 $= qj$
Maximum (or) Greatest rate of increase = $1\nabla \varphi$
 $= \int qz$
 $= g$
In what direction from the point $(1, -1, 2)$ is the
directional derivative of $\varphi = x^{2}y^{2}z^{3}$ a maximum?
What is the magnitude of this maximum?
Soln:
 $\varphi = x^{2}y^{2}z^{2}$
 $= i\frac{\partial \varphi}{\partial x} + j\frac{\partial \varphi}{\partial y} + k\frac{\partial \varphi}{\partial z}$
 $= i\frac{\partial}{\partial x}(x^{2}y^{2}z^{2}) + j\frac{\partial}{\partial y}(x^{2}y^{2}z^{3}) + k\frac{\partial}{\partial z}(x^{2}y^{2}z^{3}) + k\frac{\partial}{\partial z}(x^{2}z^{3})$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

() Find the angle between the surfaces
$$x^2 + y^2 + z^2 = 5$$

and $x^2 + y^2 + z^2 - 2x = 5$ at $(0,1,2)$.
Soln:
Let φ_1 : $x^2 + y^2 + z^2 - 5$; $\varphi_2 = x^2 + y^2 + z^2 - 2x - 5$
 $\frac{\partial \varphi_1}{\partial x} = 2x$
 $\frac{\partial \varphi_2}{\partial x} = 2x - 2$
 $\frac{\partial \varphi_4}{\partial y} = 2y$
 $\frac{\partial \varphi_2}{\partial z} = 2z$
 $\forall \varphi_1 = 2x\vec{i}^2 + 2y\vec{j}^2 + 2z\vec{k}$; $\forall \varphi_2 = (2x - 2)\vec{i}^2 + 2y\vec{j}^2 + 2z\vec{k}$
 $\forall \varphi_1 = 2x\vec{i}^2 + 2y\vec{j}^2 + 2z\vec{k}$; $\forall \varphi_2 = (2x - 2)\vec{i}^2 + 2y\vec{j}^2 + 2z\vec{k}$
 $\forall \varphi_1 = \sqrt{4} + 16 = \sqrt{20}$ $\forall \varphi_2 = -2\vec{i}^2 + 4\vec{j}^2 + 4\vec{k}$
 $\forall \varphi_1 = \sqrt{4} + 16 = \sqrt{20}$ $\forall \varphi_2 = \sqrt{4} + 4 + 16 = \sqrt{24}$
Angle between the surfaces,
 $\cos \theta = \frac{\nabla \varphi_1 \cdot \nabla \varphi_2}{|\nabla \varphi_1| |\nabla \varphi_2|}$
 $= \frac{(2\vec{j}^2 + 4\vec{k}) \cdot (-2\vec{i}^2 + 2\vec{j}^2 + 4\vec{k})}{\sqrt{20} \sqrt{24}}$
 $= \frac{4 + 16}{\sqrt{20} \sqrt{24}} = \frac{20}{\sqrt{20} \sqrt{24}}$
 $\cos \theta = \sqrt{\frac{5}{6}}$