

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

STOKE'S THEOREM:
If
$$\vec{F}$$
 is any continuous differentiable vector
function and \vec{s} is a surface enclosed by a curve \vec{c}
then, $\int_{C} \vec{F} \cdot d\vec{\tau} = \iint_{S} \nabla x \vec{F} \cdot \hat{n} d\vec{s}$
Where \hat{n} is the unit normal vector at any point of \vec{s} .
Note:
1. If \vec{F} is irrotational, $\nabla x \vec{F} = \vec{o}$
 $\int \vec{F} \cdot d\vec{\tau} = \iint_{S} \nabla x \vec{F} \cdot \hat{n} d\vec{s} = \vec{o} & \text{hence } \vec{F} \text{ is}$
Conservative.
2. Let $\vec{F} = \vec{p}\vec{i} + \vec{a}\vec{j} + \vec{R}\vec{x}$
 $\int Pdx + \vec{a}dy + \vec{R}dz = \iint_{S} (\frac{\partial R}{\partial y} - \frac{\partial a}{\partial z}) dy dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) dz dz$
 $+ (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$
(1) Verify stoke's theorem for a vector field defined
by $\vec{F} = (x^2 - y^3)\vec{i} + 2xy\vec{j}$ in the Dectangular region
in the xoy plane bounded by the lines $x = \vec{o}, x = \vec{a}, y = \vec{o}$ and $y = \vec{b}$.
Soln:
By Stoke's theorem,
 $\int_{C} \vec{F} \cdot d\vec{\tau} = \iint_{S} \nabla x \vec{F} \cdot \hat{n} ds$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

RHS : Given: $\vec{F} = (\chi^2 - y^2) \vec{i} + 2\chi y \vec{j}^2$ $\nabla x F = \begin{bmatrix} i \\ i \end{bmatrix}$ $\begin{cases} \frac{3}{3x}, \frac{3}{3y}, \frac{3}{3z} \\ x^2 - y^2 = 2xy \quad o \\ \vec{i} \quad (o) - \vec{j} \quad (o) + \vec{k} \quad (ay + ay) = 4y \quad \vec{k} \\ \end{cases}$ Here the surface Smillion Y: denotes the rectargle OABC. B (0,6) (a,b) and the unit outward normal Vector is K $n = n = \vec{k}$ n = 10 n = 10 $\therefore Curl \vec{F} \cdot \vec{n} \, ds \times \vec{k}$ $= 4y \vec{k} \cdot \vec{k} \, dx dy$ $= 4y \, dx \, dy$ $\int \int \nabla x \vec{F} \cdot \vec{n} \, ds = \iint 4y \, dx \, dy$ ben jab bieig rotoev a " of first yed a dy at a where it says is the rectangular inglow $= 4a \left[\frac{y^2}{a} \right]_0^{-\frac{1}{2}} \int_0^{\frac{1}{2}} \frac{b d}{b d} = \frac{y}{b d} \int_0^{\frac{1}{2}} \frac{b d}{b d} = \frac{y}{b d}$ $= \frac{4ab^2}{2}$ $= 2ab^2 \longrightarrow (1)$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

$$\frac{J H s}{F} = (x^2 - y^2) \vec{i} + 2xy \vec{j}$$

$$d\vec{x} = dx \vec{i} + dy \vec{j}$$

$$\vec{F} \cdot d\vec{r} = (x^2 - y^2) dx + 2xy dy$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} [(x^2 - y^2) dx + 2xy dy]$$

$$= \int_{A} + \int_{AB} + \int_{BC} + \int_{CO}$$

$$A \log q \wedge (y = 0):$$

$$\int_{A} (x^2 - y^2) dx + 2xy dy = \int_{0}^{A} x^2 dx \quad [\therefore y = 0]$$

$$A \log q \wedge (x = a):$$

$$\int_{AB} (x^2 - a^2) dx + 2xy dy = \int_{0}^{A} 2ay dy \quad [\therefore x = 0]$$

$$= \frac{a^3}{3}$$

$$A \log AB (x = a):$$

$$\int_{AB} (x^2 - y^2) dx + 2xy dy = \int_{0}^{A} 2ay dy \quad [\therefore x = 0]$$

$$= ab^2$$

$$A \log g BC (y = b):$$

$$\int_{BC} (x^2 - y^2) dx + 2xy dy = \int_{0}^{A} (x^2 - b^2) dx \quad [\therefore y = b]$$

$$= db^2$$

$$A \log g BC (y = b):$$

$$\int_{BC} (x^2 - y^2) dx + 2xy dy = \int_{0}^{A} (x^2 - b^2) dx \quad [\therefore y = b]$$

$$\Rightarrow dy = 0$$

$$A \log g C (y = b):$$

$$\int_{BC} (x^2 - y^2) dx + 2xy dy = \int_{0}^{A} (x^2 - b^2) dx \quad [\therefore y = b]$$

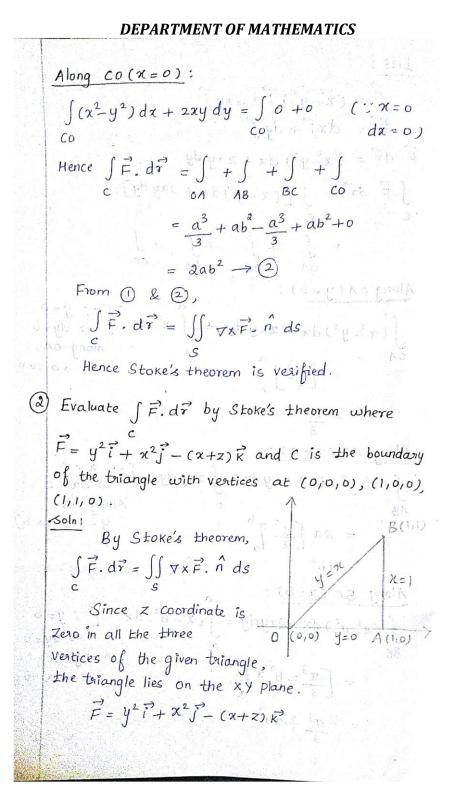
$$\Rightarrow dy = 0$$

$$A \log g C (x - b^2) dx \quad [\therefore y = b]$$

$$\Rightarrow dy = 0$$

$$A \log g C (x - b^2) dx \quad [x - y = b]$$

$$\Rightarrow dy = 0$$


$$A \log g C (x - b^2) dx \quad [x - y = b]$$

$$\Rightarrow dy = 0$$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

