

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III SOLUTIONS OF EQUATIONS

TTERATIVE METHODS (Or) INDIRECT METHODS : GAUSS JACOBI (07) JACOBI'S METHOD : Let the system of simultaneous equations be Assume : $a_1x + b_1y + c_1z = d_1$ 19,1516,1+10, $(\tilde{\mathbf{1}})$ a221+ b24+ C3 = d2 16-1>10-1+162 azzi + bay + Caz = da (The diagonal elts. should dominant, so that, the iluation process can This system of equations can also be written as: be applied $a = \frac{1}{a} (d_1 - b_1 y - c_1 z)$ y = 1/2 (d2 - d221 - C23) $3 = \frac{1}{c_3} (d_3 - a_3 \pi - b_3 y)$ Let the first approximation be no, yo and zo. Sub. no, yo, and zo in (2), we get. $x_{1} = \frac{1}{2} (d_{1} - b_{1}y_{0} - c_{1}z_{0})$ y1 = 1/2 (d2 - a2210 - C230) $3_1 = \frac{1}{C_2} (d_3 - a_3 x_0 - b_3 y_0)$ Sub. the values of X1, Y1, 3, in (2), we got

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III SOLUTIONS OF EQUATIONS

$$\begin{aligned} \varkappa_{2} &= \frac{1}{a_{1}} (d_{1} - b_{1}y_{1} - c_{1}z_{1}) \\ y_{2} &= \frac{1}{b_{2}} (d_{2} - a_{3}x_{1} - c_{2}z_{1}) \\ z_{2} &= \frac{1}{c_{a}} (d_{a} - a_{3}x_{1} - b_{a}y_{1}) \\ \text{This process is supeated HII the difference betwon.} \\ \text{two consecutive approximations is negligible.} \end{aligned}$$

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III SOLUTIONS OF EQUATIONS

The gn. system can be woritten as,
$x = \frac{1}{10} (3 + 5y + 23)$
$y = \frac{1}{10} (3 + 4n + 33)$
$3 = \frac{1}{10} (-3 - \varkappa - 6.4)$
0 - 10 (5 - 2 - 09)
I iteration ! but the initial values be
$2i_1 = \frac{1}{10} (3 + 5y_0 + 2z_0)$
$y_1 = \frac{1}{10} (3 + 4 20 + 3 30)$
$3_1 = \frac{1}{10} (-3 - x_0 - 6 y_0)$
Let the initial values be $20 = 30 = 0$
$\chi_1 = \frac{1}{10} \left[3 + 5(0) + 2(0) \right] = 0.3$
$y_1 = \frac{1}{10} [3+4(0)+3(0)] = 0.3$
9, - 10 -
$3_1 = \frac{1}{10} \begin{bmatrix} -3 - 0 - 6(0) \end{bmatrix} = -0.3$
Diteration:
$\alpha_2 = \frac{1}{10} (3 + 5 y_1 + 2 g_1)$
$3_2 = \frac{1}{10} (3 + 4 \mathbf{x}_1 + 3 \mathbf{z}_1)$

 $3_2 = \frac{1}{10} (-3 - \varkappa_1 - 6y_1)$

23MAT204–STATISTICS & NUMERICAL METHODS S.SINDHUJA/AP/MATHS/SNSCT PAC

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT - III SOLUTIONS OF EQUATIONS

$\chi_2 = \frac{1}{10} \left[3 + 5 \left(0.3 \right) + 2 \left(-0.3 \right) \right] = 0.39$	
$y_2 = \frac{1}{10} [3+4(0.3)+3(-0.3)]$	
$3_2 = \frac{1}{10} [-3 - (0.3) - 6(0.3)]$	3)] = -0.51
Diteration:	IV Iteration:
×3 = 0.363	24= 0.3441
y3 = 0.303	84 = 0.2841
33 =-0.537	34 = -0.5181
2 iteration	Si iteration :
x5 = 0.3384	26=0.3401
45 = 0.2822	46 = 0.2839
35 = -0.5048	36 = -0.5031
VP il-eration	Vin iteration:
$x_7 = 0.3413$	28 = 0.3416
y = 0.2851	y 8 = 0.2852
37 =-0 5043	38 = -0 50519
Ix iteration	à iteration:
29 = 0.3415	210 = 0.34148
y9 = 0.28511	y10 = 0.28504
39 = -0.5052	310 = -0.50522

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III SOLUTIONS OF EQUATIONS

From 2 & 2 3 teration, approximately we get $2 \approx 0.3415$ $3 \approx 0.2850$ $3 \approx -0.5052$ (2) Solve the Jollowing equations using Jacobi's Ateration method: 30x - 2y + 33 = 75 2 + 17y - 23 = 482 + y + 93 = 15