

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

	UNIT-Y
	SECOND ORDER LINEAR ORDINARY
	Second order linear differential equation with
	Constant Coefficients Consider a second order linear differentiate equation is,
	(a ₀ $D^2 + a_1 D + a_2$) $y = R(x)$ To find Complementary function:
	The auxiliary equation is, $a_0 m^2 + a_1 m + a_2 = 0$.
	Nature of roots Complementary function
0	m, k m ₂ are real $C.F = Ae^{m_1 x} + Be^{m_2 x}$ and different
2)	m_i and m_a are real $C.F = (Ax+B)e^{mx}$ and equal
3	m, and m_z are complex, Let $m_1 = \alpha + i\beta$ C. $F = e^{\alpha x}$ (A cos $\beta x + i\beta$)
	$m_3 = \alpha - i\beta$ B sin βx

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS Droblems to find complementary function : Solve: (D2-5D+6)y=0 soln: The A.E is The roots are real & different. C.F = Aem, x + Be m. x $C \cdot F = Ae^{2x} + Be^{3x}$ $-i \int y = Ae^{2x} + Be^{3x}$ Solve: $\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9y = 0$ Griven: (22-62+9) y = 0 The A.E is $m^2 - 6m + 9 = 0$ m = 3, 3The roots are real and equal. $C \cdot F = (Ax + B) e^{Mx}$ e (Ax+B) e y = (Ax+B) & 3x

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS

Rules to find particular integral
$$(P.I)$$
:

$$P.I = \frac{1}{f(D)} R(x)$$

$$Failure Case: Nhen $f(D) = 0$.

$$\Rightarrow P.I = \frac{x}{f'(D)} R(x)$$

$$f'(D)$$
Again failure, When $f'(D) = 0$

$$P.I = \frac{x^2}{f''(D)} R(x)$$

$$f''(D)$$
and so on.

$$Type I: R(x) = e^{x}$$

$$Replace D \to a$$

$$Solve (D^2+1)y = e^{-x}$$

$$Soln: The A.E is $m^2+1 = 0 \Rightarrow m^2 = -1$

$$m = \pm i = 0 \pm i$$

$$c = 0, \beta = 1$$

$$C.F = e^{xx} (A cos \beta x + B sin \beta x)$$

$$= e^{0x} (A cos x + B sin x)$$

$$C.F = A cos x + B sin x$$$$$$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS Y = C.F + P. I $y = A \cos x + B \sin x + e^{-x}$ Soln: The A.E is $m^2 + 4m + 4 = 0$ $(m+2)^2 = 0$ m = -2, -2The roots are real and equal. C.F = (Ax+B) E P.I = 11e-27 D2+4D+4 4-8+4

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS

$$= \frac{11 \times e^{2x}}{2D + y}$$

$$= \frac{11 \times e^{2x}}{2(-2) + y} = \frac{11 \times e^{-2x}}{-4 + y} = \frac{11 \times e^{-2x}}{D} \quad \text{(failure)}$$

$$P \cdot T = \frac{11 \times e^{-2x}}{D}$$

$$y = c \cdot F + P \cdot T$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11 \times e^{-2x}}{D}$$

$$y = (Ax + B)e^{-2x} + \frac{11$$