

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade ASPproved by AICTE, New Delhi & Affiliated to Anna University, Chennai

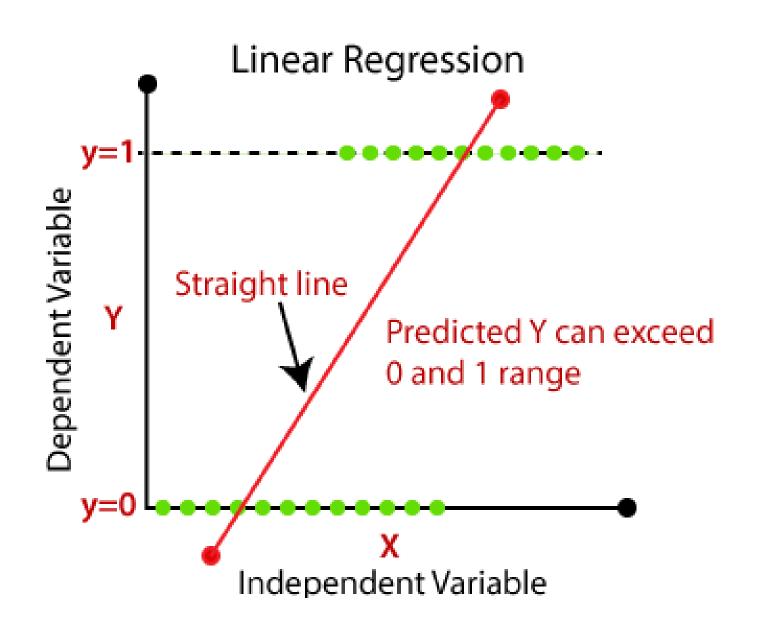
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING

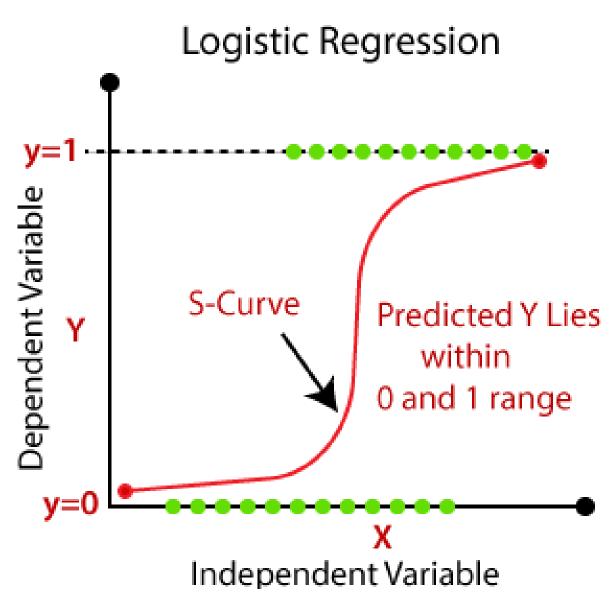
II YEAR IV SEM

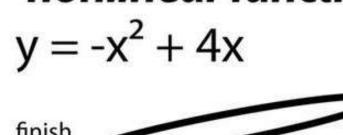
UNIT II – SUPERVISED LEARNING ALGORITHMS

TOPIC 6 – Polynomial Regression

Redesigning Common Mind & Business Towards Excellence




Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

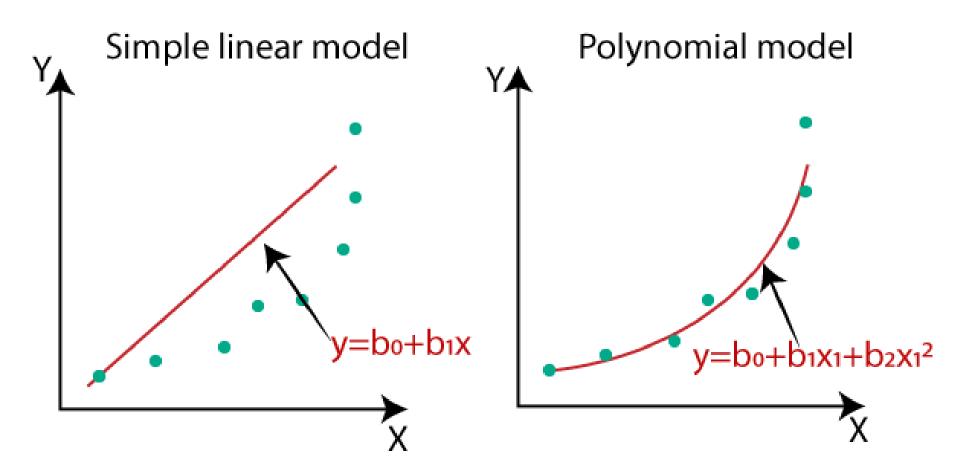


What is Linear and Non Linear?

nonlinear function

start

linear function



Why Polynomial Regression?

Polynomial Regression is a regression algorithm that models the relationship between a dependent(y) and independent variable(x) as nth degree polynomial.

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + b_2 x_1^3 + \dots b_n x_1^n$$

Polynomial Linear Regression: What and Why?

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

A Polynomial Regression algorithm is also called Polynomial Linear Regression because it does **not depend on the variables, instead, it depends on the coefficients**, which are arranged in a linear fashion.

Polynomials	Form	Degree	Examples
Linear Polynomial	p(x): ax+b, a ≠0	Polynomial with Degree 1	x + 8
Quadratic	p(x): ax²+b+c,	Polynomial with	$3x^2-4x+7$
Polynomial	a ≠ 0	Degree 2	
Cubic	p(x): ax^3+bx^2+cx ,	Polynomial with	$2x^3+3x^2+4x+6$
Polynomial	$a \neq 0$	Degree 3	

Position	Level(X-variable)	Salary(Y-Variable)
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

Implementing Polynomial Regression

Choosing the Degree of the Polynomial

Evaluating the Model


```
[ ] import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

# Generate Sample Data (Non-Linear Relationship)
X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).reshape(-1, 1)
y = np.array([1.5, 2.5, 3.8, 5.0, 7.1, 9.3, 12.2, 15.0, 19.0, 23.5])
```



```
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X) # Transforms X into [1, X, X^2]

# Fit Polynomial Regression Model
model = LinearRegression()
model.fit(X_poly, y)
y_pred = model.predict(X_poly)
```

8/11


```
# Visualization
plt.scatter(X, y, color="black", label="Data Points")
plt.plot(X, y_pred, color="blue", label="Polynomial Regression (Degree=2)")
plt.xlabel("X")
plt.ylabel("y")
plt.legend()
plt.title("Polynomial Regression Example")
plt.show()
```


References

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, —Learning from Data, AML Book Publishers, 2012.

P. Flach, —Machine Learning: The art and science of algorithms that make sense of datal, Cambridge University Press, 2012.

W3school.com

