

(An Autonomous Institution) Coimbatore – 35



DEPARTMENT OF MATHEMATICS

UNIT - V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

FOURTH ORDER RUNGE KUTTA METHOD FOR SOLVING FIRST AND SECOND ORDER EQUATIONS! SECOND ORDER RK METHOD : Pas 191.20 01 11 21 the initial values of (a, y) for the differential eqn $\frac{dy}{dx} = \frac{1}{2}(x, y)$ then the first increment in y namely sy is calculated from the formula k, = h2(x,y) $k_2 = h_{\mathcal{F}} \int [n + \frac{h}{2}, y + \frac{k_1}{2}]$ Now y(n+h) = y(n)+ Ay (4) y1= y0+ Ay THIRD ORDER RK METHOD : LOOD & HULLON $K_i = h_i(n, y)$ $k_2 = h_8 [n + \frac{h}{2}, y + \frac{k_1}{2}]$

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

 $K_3 = h_1 [n_1 + h_1, y_1 + 2k_2 - k_1]$ $\Delta y = \frac{1}{6} \left[k_1 + 4 k_2 + k_3 \right]$ Now YI= Yot AY FOURTH ORDER RK METHOD: k = h f(n, y)k1=书子「約+臺, y+<u>茶</u>」 $k_3 = h_{2} \left[n + \frac{h_{2}}{2}, y + \frac{k_{2}}{2} \right]$ $k_4 = h_{2} \left[n + h, y + k_{3} \right]$ Dy = - [K1+2k2+2k3+k47 Now YI = Yot Ay () Given dy = 23+y, yco)=2, Compute y (0.2), y (0.4) & y (0.6) by RK method & Jourth order.

23MAT204-STATISTICS & NUMERICAL METHODS S.SINDHUJA/AP/MATHS/SNSCT PAGE - 2 OF 5

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

23MAT204–STATISTICS & NUMERICAL METHODS

S.SINDHUJA/AP/MATHS/SNSCT PAGE - 3 OF 5

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Now RK richtied for
$$(y_{1}, y_{1})$$

 $k_{1} = \frac{1}{2} (y_{1}, y_{1}) = 0.4902$.
 $k_{2} = \frac{1}{2} \int x_{1} + \frac{\pi}{2}, y_{1} + \frac{k_{1}}{2} \int = 0.5430$
 $k_{3} = \frac{1}{2} \int x_{1} + \frac{\pi}{2}, y_{1} + \frac{k_{2}}{2} \int = 0.5483$
 $k_{4} = \frac{1}{2} \Im \left[x_{1} + \frac{\pi}{2}, y_{1} + \frac{k_{2}}{2} \right] = 0.6111$
 $\Delta y = 0.5473$.
 $y_{2} = y_{1} + \Delta y$
 $= 2.4432 + 0.5473$
 $= 2.9905$

Now KK niethod for (2, 42) where 22=0.4, 42 = 2.9905

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

$$\begin{aligned} \kappa_{1} &= h_{1}^{2}(n_{2}, y_{2}) = 0.6108 \\ \kappa_{2} &= h_{1}^{2}(n_{2} + \frac{h}{2}, y_{2} + \frac{\kappa_{2}}{2}) = 0.6841 \\ \kappa_{3} &= h_{1}^{2}(n_{2} + \frac{h}{2}, y_{2} + \frac{\kappa_{2}}{2}) = 0.6914 \\ \kappa_{4} &= h_{1}^{2}(n_{2} + h, y_{2} + \kappa_{3}) = 0.7795 \\ \Delta y &= 0.6902 . \\ y_{3} &= y_{2} + \Delta y &= 2.9905 + 0.6902 = 3.6807 \\ \hline \\ \hline \\ (2) Uring RK method of 21th order Solve $y' = \frac{y^{2} - n^{2}}{y^{2} + n^{2}}$ with $y(0) = 1$ at $n = 0.2$.
Soln: 1.1959 \\ \hline \\ \hline \\ \\ \hline \\ uring RK method of 21th order Take $h = 0.1$.
Soln: $y_{1} = y(0.7) = 1.8762 \\ y_{2} = y(0.8) = 2.0142. \end{aligned}$$$

23MAT204–STATISTICS & NUMERICAL METHODS S.SINDHUJA/AP/MATHS/SNSCT PAGE - 5 OF 5