

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade ASPproved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING

II YEAR IV SEM

UNIT II – SUPERVISED LEARNING ALGORITHMS

TOPIC 9 – Implementing Linear and Logistic regression using Scikit Learn Library

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Linear Regression

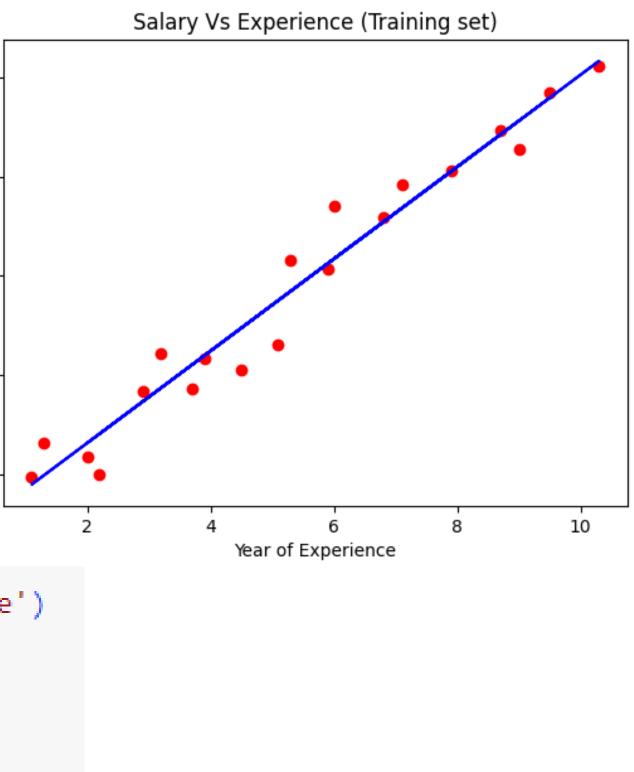
```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv('salary_data.csv')
print("Original Data:")
print(df.head())
```


Original Data:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

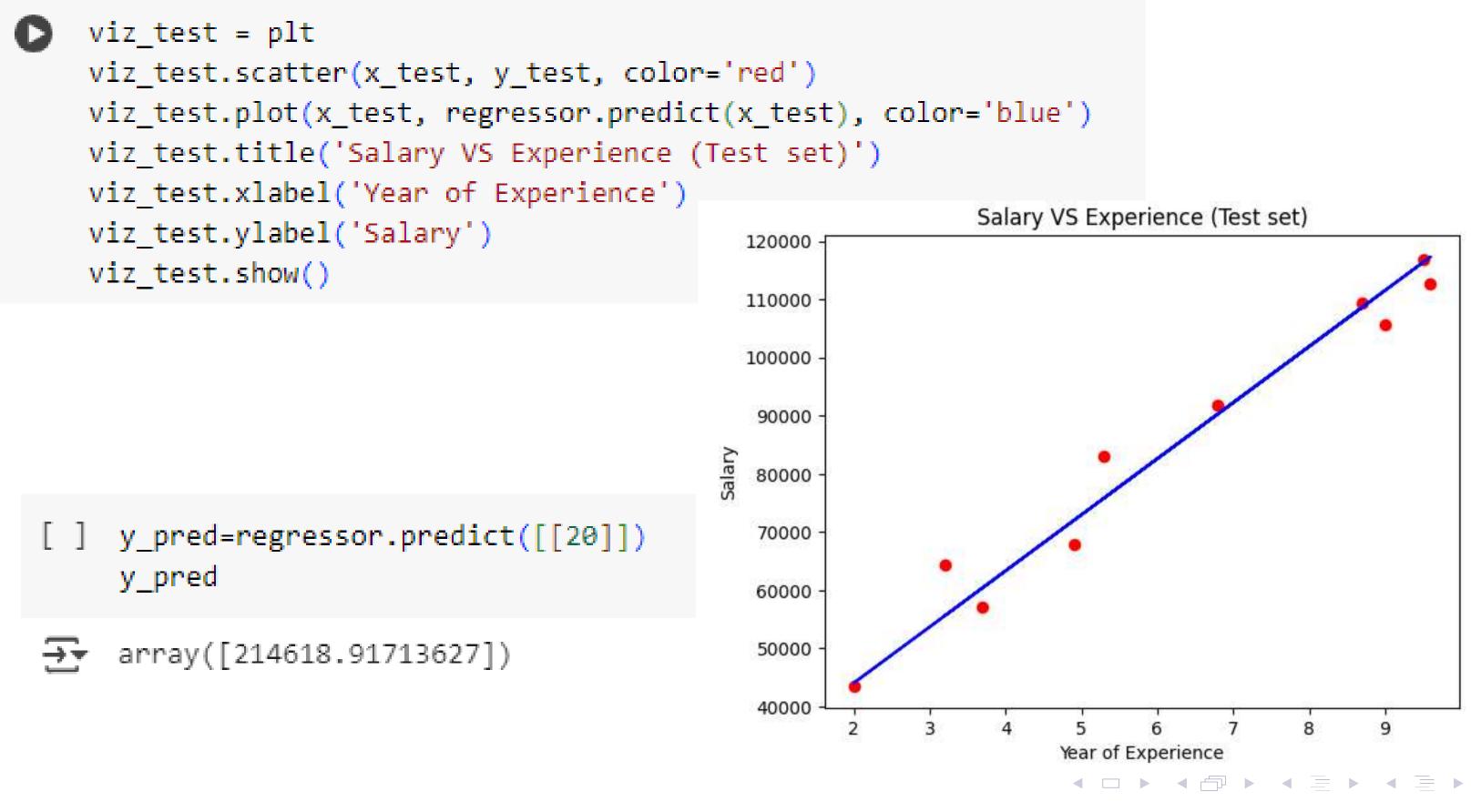
```
[ ] x = df.iloc[:,:-1].values
  y = df.iloc[:,1].values
  y
```


37731., 43525., 39891., 56642., 60150., 57189., 63218., 55794., 56957., 57081., 66029., 83088., 81363., 93940., 91738., 13812., 109431., 105582., 116969., 112635.,


 $\bullet \Box \models \bullet \bullet \Box \models \bullet \bullet = \models \bullet \bullet = \models \bullet$

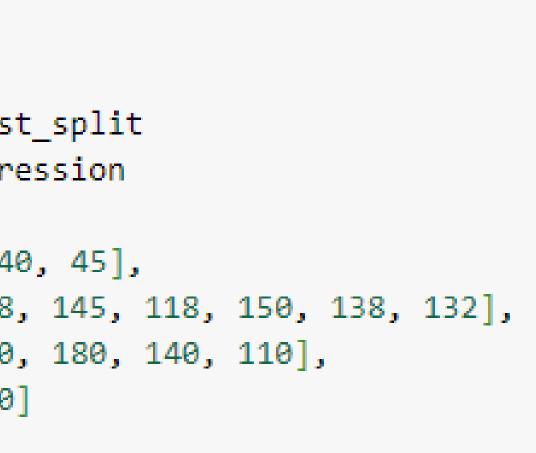
Linear Regression

from sklearn.linear model import LinearRegression	120000 -					
<pre>regressor = LinearRegression() regressor.fit(x_train,y_train)</pre>	100000 -					
	, 00008 dial					
🛨 🗸 LinearRegression 💿 💿						
LinearRegression()	60000 -					
<pre>[] viz_train = plt viz_train color_'red')</pre>	40000 -					
<pre>viz_train.scatter(x_train, y_train, color='red') viz_train.plot(x_train, regressor.predict(x_train), color='blue viz_train.title('Salary Vs Experience (Training set)') viz_train.xlabel('Year of Experience') viz_train.ylabel('Salary')</pre>						



 $\bullet \Box \models \bullet \bullet \Box \models \bullet \bullet = \models \bullet \bullet = \models \bullet$

Linear Regression-Prediction of salary for 20 year of experience


(4/10)

Logistic Regression

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
data = {
    "Age": [25, 32, 47, 50, 35, 60, 28, 55, 40, 45],
    "BloodPressure": [120, 130, 140, 135, 128, 145, 118, 150, 138, 132],
    "Glucose": [85, 90, 160, 150, 88, 170, 80, 180, 140, 110],
    "Diabetic": [0, 0, 1, 1, 0, 1, 0, 1, 1, 0]
}
df = pd.DataFrame(data)
df
```


Logistic Regression

		Age	BloodPressure	Glucose	Diabetic	Q	X =	df[]	"Age", "BloodPu	ressure", "
	0	25	120	85	0			<pre>= df["Diabetic"] # Output Labe</pre>		
	1	32	130	90	0	÷		Age	BloodPressure	Glucose
	2	47	140	160	1		0	25	120	85
	3	50	135	150	1		1	32	130	90
	4	35	128	88	0		2	47	140	160
	5	60	145	170	1		3	50	135	150
	6	28	118	80	0			35	128	88
	7	55	150	180	1		5	60	145	170
	<i>.</i>		100	100			6	28	118	80
	8	40	138	140	1		7	55	150	180
	9	45	132	110	0		8	40	138	140
							9	45	132	110

"Glucose"]] # Input Features bel

 $\bullet \Box \models \bullet \bullet \Box \models \bullet \bullet = \models \bullet \bullet = \models \bullet$

(6/10)

Logistic Regression

[] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X test

₹		Age	BloodPressure	Glucose
	3	50	135	150
	2	47	140	160

model = LogisticRegression() model.fit(X train, y train)

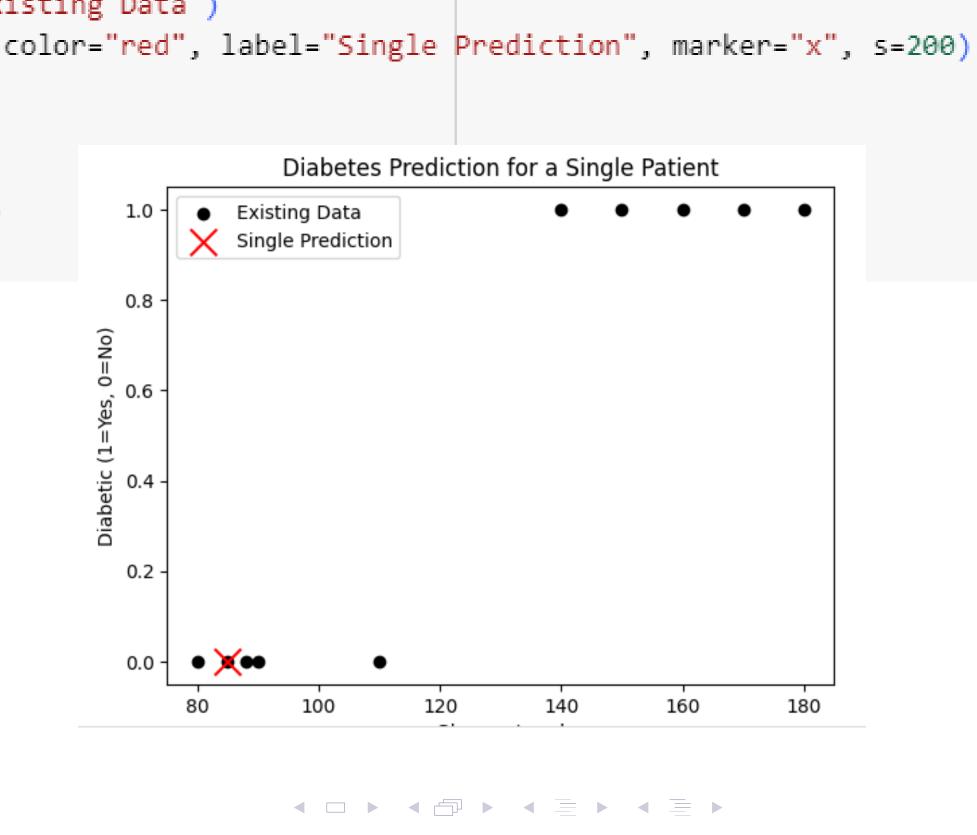
single_patient = np.array([25, 120, 85])single_prediction = model.predict(single_patient)

 $\bullet \Box \models \bullet \Box \blacksquare \models \bullet \bullet \Box \blacksquare \models \bullet$

Logistic Regression- Prediction

result = "Diabetic" if single_prediction == 1 else "Non-Diabetic" print(f" Prediction for Single Patient:") print(f"Age: {single patient[0][0]}, BP: {single patient[0][1]}, Glucose: {single patient[0][2]}") print(f"Prediction: {result}")

Prediction for Single Patient: Age: 25, BP: 120, Glucose: 85 Prediction: Non-Diabetic



Logistic Regression- Visualization

```
# Visualization: Showing the single patient prediction
plt.scatter(X["Glucose"], y, color="black", label="Existing Data")
plt.scatter(single_patient[:, 2], single_prediction, color="red", label="Single Prediction", marker="x", s=200)
plt.xlabel("Glucose Level")
plt.ylabel("Diabetic (1=Yes, 0=No)")
plt.legend()
plt.title("Diabetes Prediction for a Single Patient")
plt.show()
```


(9/10)

- 1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Private Limited, 2013.
- 2. Sebastian Raschka, Yuxi (Hayden) Liu Machine Learning with PyTorch and Scikit-Learn: Developmachine learning and deep learning models with Python Packt Publishing Limited (23 December 2022).

