
SNSCT/CSE Page 1

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35

(An Autonomous Institution)

16CS306 and Composing Mobile Apps

UNIT 3

Native Data Handling

What is native code for Android devices, and what is the NDK?

Android apps run within the Dalvik virtual machine, which interprets device-agnostic, cross-

platform commands into instructions for the specific device that it is running on.The speed and

memory overhead is a worthwhile tradeoff. In some cases, developers need the absolute fastest

performance possible. The NDK allows embedding C and C++ components within Android

apps, allowing the most performance-intensive pieces to be as close to the hardware as

possible. This comes at a cost, though — using native code complicates development. There are

more tools to use and infrastructure to set up. Also, some details that were handled by the Dalvik

virtual machine must now be handled by the developer. For these reasons, native code should be

used only when necessary.

When native code is needed

There are times that using native code can be advantageous, such as processing data or

computing physics and graphics for games. Access to existing native libraries, as well as high-

performance code, can also be good reasons.

Uses for the native code

Game engine developers often dive right in to native code. The limited speed and memory of

mobile devices means native code may be necessary to squeeze every bit of potential out for

them

The native-activity sample resides under the NDK installation root, in samples/native-activity. It

is a very simple example of a purely native application, with no Java source code. In the absence

of any Java source, the Java compiler still creates an executable stub for the virtual machine to

run.

#include <EGL/egl.h>

#include <GLES/gl.h>

SNSCT/CSE Page 2

#include <android/sensor.h>

#include <android/log.h>

#include <android_native_app_glue>

Create a new Native Activity project

In this tutorial, you’ll first create a new Android Native Activity project and then build and run

the default app in the Visual Studio Emulator for Android.

To create a new project

1. Open Visual Studio. On the menu bar, choose File, New, Project.

2. In the New Project dialog box, under Templates, choose Visual C++, Cross Platform,

and then choose the Native-Activity Application (Android) template.

3. Give the app a name like MyAndroidApp, and then choose OK.

Visual Studio creates the new solution and opens Solution Explorer.

The new Android Native Activity app solution includes two projects:

• MyAndroidApp.NativeActivity contains the references and glue code for your app to

run as a Native Activity on Android. The implementation of the entry points from the

glue code are in main.cpp. Precompiled headers are in pch.h. This Native Activity app

project is compiled into a shared library .so file which is picked up by the Packaging

project.

• MyAndroidApp.Packaging creates the .apk file for deployment on an Android device or

emulator. This contains the resources and AndroidManifest.xml file where you set

manifest properties. It also contains the build.xml file that controls the Ant build process.

It's set as the startup project by default, so that it can be deployed and run directly from

Visual Studio.

Build and run the default Android Native Activity app

Build and run the app generated by the template to verify your installation and setup. For this

initial test, run the app on one of the device profiles installed by the Visual Studio Emulator for

Android. If you prefer to test your app on another target, you can load the target emulator or

connect the device to your computer.

To build and run the default Native Activity app

1. If it is not already selected, choose x86 from the Solution Platforms dropdown list.

If the Solution Platforms list isn’t showing, choose Solution Platforms from the

Add/Remove Buttons list, and then choose your platform.

2. On the menu bar, choose Build, Build Solution.

SNSCT/CSE Page 3

The Output window displays the output of the build process for the two projects in the

solution.

3. Choose one of the VS Emulator Android Phone (x86) profiles as your deployment target.

If you have installed other emulators or connected an Android device, you can choose

them in the deployment target dropdown list.

4. Press F5 to start debugging, or Shift+F5 to start without debugging.

Visual Studio starts the emulator, which takes a few seconds to load and deploy your

code. Once your app has started, you can set breakpoints and use the debugger to step

through code, examine locals, and watch values.

5. Press Shift + F5 to stop debugging.

The emulator is a separate process that continues to run. You can edit, compile, and

deploy your code multiple times to the same emulator.

