

# SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC, UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E., CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE,641 035, TAMIL NADU

#### DEPARTMENT OF AEROSPACE ENGINEERING 19MEE304 Total Quality Management

**Topic: Measures of Central Tendency and Dispersion in Quality Management** 

## **1. Introduction to Central Tendency and Dispersion**

- Central Tendency: Describes the center or average of a dataset.
- **Dispersion:** Measures how data points spread around the central value.
- Importance in Quality Management:
  - Helps monitor process stability.
  - ✓ Identifies variations in production.
  - Supports Six Sigma and Statistical Process Control (SPC).

### 2. Measures of Central Tendency

### A. Mean (Arithmetic Average)

• Formula:

$$ar{X} = rac{\sum X_i}{N}$$

Where:

Where:

- $\bar{X}$  = Mean
- X<sub>i</sub> = Each value in dataset
- N = Total number of values

#### • Example in Quality Control:

- Measuring the **average weight** of packaged products in a factory.
- Issue: Affected by extreme values (outliers).

### **B. Median (Middle Value)**

- Definition: The central value when data is arranged in ascending order.
- Formula:
  - $\circ$  If N is odd: Median = Middle value.
  - If N is even: Median = Average of two middle values.
- Example in Quality Control:
  - Median time taken to **resolve customer complaints** in a service industry.
  - Advantage: Not affected by extreme values.

#### C. Mode (Most Frequent Value)

- Definition: The value that appears most frequently in a dataset.
- Example in Quality Control:
  - Most common **defect type** in a manufacturing unit.
  - Used in Pareto Analysis (80/20 Rule).

### **3.** Measures of Dispersion (Variability in Data)

#### A. Range (Simplest Measure of Dispersion)

• Formula:

Range = Maximum Value - Minimum Value

- Example:
  - Measuring the **variation in diameter** of machine-produced bolts.
  - **Limitation:** Does not show distribution of values.

#### B. Variance (σ2\sigma^2σ2)

- Definition: Measures how data deviates from the mean.
- Formula:

$$\sigma^2 = rac{\sum (X_i - ar{X})^2}{N}$$

Where:

- X<sub>i</sub> = Each value
- $\overline{X}$  = Mean
- N = Total values

#### **Example in Quality Control:**

• Variance in the thickness of aircraft components ensures consistency.

#### C. Standard Deviation (σ\sigmaσ)

- Definition: Square root of variance; measures spread of data.
- Formula:

$$\sigma = \sqrt{\sigma^2}$$

• Importance in Quality Management:

Helps in setting **control limits** in SPC.

Determines **process capability** in Six Sigma.

**Smaller standard deviation** = Better quality consistency.

- Example:
  - Monitoring the **standard deviation of assembly line errors** in an automobile plant.

#### **D.** Coefficient of Variation (CV)

- Definition: Standard deviation relative to the mean.
- Formula:

$$CV = \frac{\sigma}{\bar{X}} \times 100$$

- Example:
  - Comparing **product weight variation** across different factories.

### 4. Statistical Tools Using Central Tendency & Dispersion

| Tool                              | Purpose                        | Example                                               |
|-----------------------------------|--------------------------------|-------------------------------------------------------|
| Control Charts (X & R<br>Charts)  | Monitor process<br>stability   | Track weight of pharmaceutical tablets                |
| Process Capability<br>Index (Cpk) | Measure process performance    | Determine machine accuracy in aerospace manufacturing |
| Histogram                         | Visualize data<br>distribution | Analyze customer satisfaction survey scores           |

### **5. Industry Applications**

Scase Study 1: Quality Control in Semiconductor Manufacturing

- Issue: Variations in silicon wafer thickness affected chip performance.
- Solution: Used Mean & Standard Deviation to set control limits.
- **Outcome:** Reduced defects by **30%**, improving yield.

#### Case Study 2: Automotive Industry (Toyota)

- Used Six Sigma principles to analyze variation in engine part sizes.
- Applied Standard Deviation & Process Capability Analysis.
- **Result:** 99.9997% defect-free production achieved.

### 6. Challenges in Using Central Tendency & Dispersion

**Outliers Impacting the Mean**  $\rightarrow$  Use Median for accuracy.

**Skewed Data Distribution**  $\rightarrow$  Use Mode for better insights.

**Misinterpretation of Variability**  $\rightarrow$  Always combine Range, Variance & Standard Deviation.

♦ Solution:

- ✓ Use Control Charts & SPC methods to monitor variations.
- ✓ Implement **AI-driven real-time monitoring** in manufacturing.

### 7. Conclusion

- Central tendency & dispersion are crucial in quality management.
- Understanding data spread ensures process control & consistency.
- Industry leaders use these measures in SPC, Six Sigma, and defect prevention.

• Adopting AI & automation enhances statistical analysis for quality improvement.