

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC, UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E, CSE, EEE, ECE, Mech & B. Tech.IT) COIMBATORE,641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING 19MEE304 Total Quality Management

Topic: Taguchi Quality Loss Function

1. Introduction to Taguchi's Quality Loss Function

$\not >$ Definition:

The **Taguchi Quality Loss Function (QLF)** is a mathematical model that measures the **cost of deviating from the target value** in product and process design. Unlike traditional quality approaches that focus only on meeting specifications, **Taguchi emphasizes that even small deviations from the ideal target lead to a loss in quality**.

🔗 Key Concept:

- Traditional quality control considers products **"good" or "bad"** based on tolerance limits.
- Taguchi argues that any deviation from the target value results in a loss, even if within acceptable limits.

🔗 Example:

If the **ideal diameter of a bearing** is **10.00 mm**, both **9.98 mm and 10.02 mm** might be within tolerance, but they still cause **variation in performance**, leading to customer dissatisfaction.

2. Traditional View vs. Taguchi's View

Traditional Quality Approach (Tolerance-Based Thinking)

- Products are **acceptable** if they fall **within tolerance limits**.
- Products are **defective** if they are **outside tolerance limits**.
- ⊘ Ignores performance variations within the limits.
- \bigcirc Sudden increase in defect rates **beyond tolerance limits**.

Taguchi's Approach (Loss-Based Thinking)

Quality is best at the target value and degrades gradually as variation increases.
 Even small deviations cause losses (e.g., increased customer complaints, reduced

lifespan).

Loss increases exponentially as deviation grows.

🔗 Illustration:

- Traditional View (Binary Thinking): ✓ Good (within tolerance) × Bad (outside tolerance)
- Taguchi's View (Continuous Loss Function): 🖄 Loss increases gradually as variation increases.

3. Taguchi Loss Function Formula

The Taguchi Loss Function is given by:

$$L(x) = k(x - T)^2$$

Where:

- **L(x)** = Quality loss (cost) at a given value **x**.
- **k** = Loss coefficient (depends on industry and cost sensitivity).
- **x** = Actual value of the product characteristic.
- **T** = Target value of the characteristic.

☆ Interpretation:

- If **x** = **T** (product meets target exactly), **loss is zero**.
- If x deviates from T, loss increases quadratically.
- Larger deviations cause **exponential increases in loss**.

4. Types of Taguchi Loss Functions

Taguchi proposed **three types of loss functions** depending on the nature of the quality characteristic:

1 Nominal-the-Best (NTB) Loss Function

- Used when a **specific target value** is ideal (e.g., **shaft diameter, engine RPM**).
- Example: Ideal resistance of an electrical component should be exactly 100Ω.
- Loss increases as resistance deviates from 100Ω .

$$L(x) = k(x - T)^2$$

2 Smaller-the-Better (STB) Loss Function

- Used when **lower values are better** (e.g., **pollution levels, defects per unit, noise levels**).
- Example: Lower fuel consumption is better (liters per km should be minimized).

$$L(x) = kx^2$$

3 Larger-the-Better (LTB) Loss Function

- Used when higher values are better (e.g., battery life, tensile strength, efficiency).
- Example: Higher tensile strength of materials is desirable.

$$L(x)=k\left(rac{1}{x^2}
ight)$$

分 Graphical Representation:

- \square Nominal-the-Best \rightarrow **Parabolic loss curve centered at target value**.
- Smaller-the-Better \rightarrow **Exponential increase in loss as value increases**.

Larger-the-Better \rightarrow **Exponential decrease in loss as value decreases**.

5. Industrial Applications of Taguchi Loss Function

Automotive Industry (Toyota Production System)

- Application: Engine component tolerances (pistons, crankshafts).
- **Goal:** Maintain **precision dimensions** to reduce fuel consumption and emissions.

Electronics Industry (Intel & Samsung)

- Application: Microprocessor design and semiconductor manufacturing.
- **Goal:** Reduce variation in **circuit resistance and power efficiency**.

Aerospace Industry (Boeing & Airbus)

- Application: Turbine blade manufacturing for jet engines.
- **Goal:** Ensure **precise aerodynamic shape** to reduce fuel burn and improve efficiency.

Healthcare Industry (Medical Devices - GE Healthcare, Medtronic)

- Application: MRI machine noise levels and pacemaker battery life.
- **Goal: Minimize deviations** from ideal power consumption to **extend battery life**.

6. Benefits of Using Taguchi Quality Loss Function

- Minimizes variations & improves consistency.
- **Reduces total cost** of quality (waste, rework, warranty claims).
- **Customer satisfaction increases** due to fewer defects.
- Better process control and product design.
- **Promotes robust engineering** by focusing on achieving target values.

7. Case Study: Taguchi Method in Semiconductor Manufacturing (Intel)

S **Problem:** Intel faced **high rejection rates in microprocessor chips** due to slight variations in circuit dimensions.

\wp Solution:

Used **Taguchi Loss Function** to determine the impact of **deviations in chip size** on performance.

2 Implemented **process control improvements** to reduce dimensional variations.

③Focused on **designing robust chips** that function reliably even with minor fluctuations.

☆ Outcome:

- **Reduced chip failure rates by 25%**.
- Increased production yield and cost savings.

Enhanced overall processor performance and reliability.

8. Limitations of Taguchi Quality Loss Function

- ⊘ May require **complex calculations** for determining loss coefficient **k**.
- Some processes **do not follow quadratic loss trends**. ■
- Requires **detailed historical data** for effective implementation.

9. Conclusion

Taguchi's Quality Loss Function (QLF) is a powerful tool that quantifies quality loss due to variation.

Helps organizations **focus on minimizing deviations from the target**, not just meeting tolerance limits.

Widely used in industries like automotive, aerospace, electronics, and healthcare.

When applied correctly, **it reduces costs, improves reliability, and enhances customer satisfaction**.