

UNIT 3 SOLUTION OF EQUATIONS GAUSS SEIDAL METHOD

Itequative methods:

- i) Gauss Jacobi method
- ii) Gauss Seidel Meltrod

Gauss Salas Method: - Water to the same of the

Lot the System of Simultaneous equation be

$$a_{11}x_{1}+b_{11}y_{1}+c_{12}z_{1}=d_{1}$$

$$a_{21}x_{1}+b_{21}y_{1}+c_{22}z_{1}=d_{2}$$

$$a_{21}x_{1}+b_{21}y_{1}+c_{22}z_{1}=d_{3}$$

The above system can be written as

$$x_1 = \frac{1}{a_{11}} \left(\frac{1}{a_1} - \frac{1}{a_{12}} \frac{1}{a_{22}} - \frac{1}{a_{13}} \frac{3}{a_{23}} \right) \rightarrow 0$$

UNIT 3 SOLUTION OF EQUATIONSGAUSS SEIDAL METHOD

$$\pi_3 = \frac{1}{a_{33}} (a_3 - a_{31}x - a_{32}y) \rightarrow 6$$

Value for x and it is denoted by x_1 :

Bubstituting $x = x_1$ and y = 0 we get the value for $x_2 y$ and it is denoted by y_1 . Substituting $x = x_1$ and $y = y_1$ in y_1 we get the value y_2 and it is denoted by y_1 . Substituting y_2 and y_3 is a up get the value for y_3 and y_4 is denoted by y_1 . These values of y_1 , y_2 and y_3 are called first iterative values of y_1 , y_2 and y_3 .

4. The above process may continue for second, third, fourth, etc. iterations.

1) Bolve by Grows Seidel method

9+4+543=10

1-272+64+52=85

6x+154+22=72

Let us successarge the equations

21x+by-52=85 ->0

6x+1xy+82=72 ->0

x+y+xyz=10 ->0

1271>161+151

1151>161+121

1541>11+11)

UNIT 3 SOLUTION OF EQUATIONS GAUSS SEIDAL METHOD

$$0 \Rightarrow x = \frac{85 - 64 + 52}{27}$$

$$9 \Rightarrow 9 = \frac{72 - 6x - 27}{15}$$

$$9 \Rightarrow 2 = \frac{110 - x - y}{54}$$
Abt $y_0 = z_0 = 0$.

9= 1	5[72-6x-22]] 2	== == [110-x	-2]
у	1= 3. 5408		7=1.913	
	12=3.458		72=1.92	3
g	3.449		\$ 23= 1.9	23
9	4= 3.4484 0	608 11 12	24 = 11.95	224 1
Ų.	15 = 3.448	4	78 = 1.9	
	2138	orta	~ .	v - 301

$$y = 2.738$$

$$y = 3.4484$$

$$z = 1.9224$$

UNIT 3 SOLUTION OF EQUATIONS GAUSS SEIDAL METHOD

2. Solve the following System by Gauss sodal method: 92-4+22=9 22-24-132=-17 The guren system ob egns are 9a-y+22= 9 ->0 スナ104-22=15 一日 $2x - 2y - 13z = -17 \rightarrow 3$ Clearly the coeff mality is diagonally dominant, Some can apply Gams seided method n= o [9+y-2] y= to [15-2+2] $7 = \frac{1}{13} \left[17 + 2\pi - 24 \right]$

Let yo= 20=0.		-
N= = [9+y-22]	y=10[15-7+2]	2=13 [17+271 -24]
$x_1 = 1$	41=1.4	21=1-246
2= 0.8786	y2 = 1.6613	Zz= 1.1872
N3= 0.9208	43 = 1-6454	Z3= 1.1962

UNIT 3 SOLUTION OF EQUATIONSGAUSS SEIDAL METHOD

Ny= 0.9170	1 24 211 647 Swall	24=1.1953
N5= 0.9174	No = 1.6473	75=1.1954
N6=09174	yr=1.6473	26=1.1954

: n=0.9174, y=1.6473, 2=1:1934 or