
VIEWS OF DATA

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to provide users
with an abstract view of the data. That is, the system hides certain det
stored and maintained.
Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led designers to use complex data structures to represent data in the database. Since many
database-system users are not computer trained, developers hide the complexity from users
through several levels of abstraction, to simplify users’ interactions with the system:

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to provide users
with an abstract view of the data. That is, the system hides certain details of how the data are

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led designers to use complex data structures to represent data in the database. Since many

system users are not computer trained, developers hide the complexity from users
through several levels of abstraction, to simplify users’ interactions with the system:

Figure: Levels of abstraction in DBMS

A database system is a collection of interrelated data and a set of programs that allow

users to access and modify these data. A major purpose of a database system is to provide users
ails of how the data are

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led designers to use complex data structures to represent data in the database. Since many

system users are not computer trained, developers hide the complexity from users
through several levels of abstraction, to simplify users’ interactions with the system:

• Physical level (or Internal View / Schema): The lowest level of abstraction describes
how the data are actually stored. The physical level describes complex low-level data structures
in detail.

• Logical level (or Conceptual View / Schema): The next-higher level of abstraction
describes what data are stored in the database, and what relationships exist among those data.
The logical level thus describes the entire database in terms of a small number of relatively
simple structures. Although implementation of the simple structures at the logical level may
involve complex physical-level structures, the user of the logical level does not need to be aware
of this complexity. This is referred to as physical data independence. Database administrators,
who must decide what information to keep in the database, use the logical level of abstraction.

• View level (or External View / Schema): The highest level of abstraction describes
only part of the entire database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database. Many users of the
database system do not need all this information; instead, they need to access only a part of the
database. The view level of abstraction exists to simplify their interaction with the system. The
system may provide many views for the same database. The above figure shows the relationship
among the three levels of abstraction.

An analogy to the concept of data types in programming languages may clarify the
distinction among levels of abstraction. Many high-level programming languages support the
notion of a structured type. For example, we may describe a record as follows:

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);

End;
This code defines a new record type called instructor with four fields. Each field has a

name and a type associated with it. A university organization may have several such record
types, including

• department, with fields dept_name, building, and budget
• course, with fields course_id, title, dept_name, and credits
• student, with fields ID, name, dept_name, and tot_cred
At the physical level, an instructor, department, or student record can be described as a

block of consecutive storage locations. The compiler hides this level of detail from programmers.
Similarly, the database system hides many of the lowest-level storage details from database
programmers. Database administrators, on the other hand, may be aware of certain details of the
physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous
code segment, and the interrelationship of these record types is defined as well. Programmers

using a programming language work at this level of abstraction. Similarly, database
administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide
details of the data types. At the view level, several views of the database are defined, and a
database user sees some or all of these views. In addition to hiding details of the logical level of
the database, the views also provide a security mechanism to prevent users from accessing
certain parts of the database. For example, clerks in the university registrar office can see only
that part of the database that has information about students; they cannot access information
about salaries of instructors.

