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UNIT V – FLOW FIELD ANALYSIS AND TURBULENCE MODELS 

Two-equation Turbulence Models 

3.1 The Modelled " Equation 

An exact equation for the dissipation can be derived fromtheNavier-Stokes equation (see, for 

instance,Wilcox [49]). However, the number of unknown terms is very large and they involve 

double correlations of fluctuating velocities, and gradients of fluctuating velocities and 

pressure. It is better to derive an ε equation based on physical reasoning. In the exact equation 

for ε the production term includes, as in the k equation, turbulent quantities and and velocity 

gradients. If we choose to include uiuj and ¯Ui,j in the production term and only turbulent 

quantities in the dissipation term, we take, glancing at the k equation (Eq. 2.38) 
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Wall Functions 

The naturalway to treatwall boundaries is tomake the grid sufficiently fine so that the sharp 

gradients prevailing there are resolved. Often, when computing complex three-dimensional 

flow, that requires too much computer resources. An alternative is to assume that the flow near 

the wall behaves like a fully developed turbulent boundary layer and prescribe boundary 

conditions employing wall functions. The assumption that the flow near the wall has the 

characteristics of a that in a boundary layer if often not true at all. However, given a maximum 

number of nodes that we can afford to use in a computation, it is often preferable to use wall 

functions which allows us to use fine grid in other regions where the gradients of the flow 

variables are large. In a fully turbulent boundary layer the production term and the dissipation 

term in the log-law region (30 < y+ < 100) are much larger than the 
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3.2 Wall Functions 24

which with νt = cµρk
2/ε gives

cµ =

(
u2∗
k

)2

(3.11)

From experiments we have that in the log-law region of a boundary layer
u2∗/k ≃ 0.3 so that cµ = 0.09. cµ con-

stantWhen we are using wall functions k and ε are not solved at the nodes
adjacent to the walls. Instead they are fixed according to the theory pre-
sented above. The turbulent kinetic energy is set from Eq. 3.11, i.e. b.c. for k

kP = c−1/2
µ u2∗ (3.12)

where the friction velocity u∗ is obtained, iteratively, from the log-law (Eq. 3.4).
Index P denotes the first interior node (adjacent to the wall).

The dissipation ε is obtained from observing that production and dis-
sipation are in balance (see Eq. 3.8). The dissipation can thus be written
as b.c. for ε

εP = Pk =
u3∗
κy

(3.13)

where the velocity gradient in the production term −uv∂U/∂y has been
computed from the log-law in Eq. 3.4, i.e.

∂U

∂y
=

u∗
κy

. (3.14)

For the velocity component parallel to the wall the wall shear stress is b.c. for
velocityused as a flux boundary condition (cf. prescribing heat flux in the temper-

ature equation).
When the wall is not parallel to any velocity component, it is more con-

venient to prescribe the turbulent viscosity. The wall shear stress τw is ob-
tained by calculating the viscosity at the node adjacent to the wall from the
log-law. The viscosity used in momentum equations is prescribed at the
nodes adjacent to the wall (index P) as follows. The shear stress at the wall
can be expressed as

τw = µt,P
∂Ū

∂η
≈ µt,P

Ū‖,P

η

where Ū‖,P denotes the velocity parallel to the wall and η is the normal
distance to the wall. Using the definition of the friction velocity u∗

τw = ρu2∗

we obtain

µt,P

U‖,P

η
= ρu2∗ → µt,P =

u∗
U‖,P

ρu∗η

24



3.3 The k − ε Model 25

Substituting u∗/Ū‖,P with the log-law (Eq. 3.4) we finally can write

µt,P =
ρu∗ηκ

ln(Eη+)

where η+ = u∗η/ν.

3.3 The k − ε Model

In the k − ε model the modelled transport equations for k and ε (Eqs. 2.38,
3.2) are solved. The turbulent length scale is obtained from (see Eq. 1.12,2.37)

ℓ =
k3/2

ε
. (3.15)

The turbulent viscosity is computed from (see Eqs. 2.11, 2.36, 1.12)

νt = cµk
1/2ℓ = cµ

k2

ε
. (3.16)

We have five unknown constants cµ, cε1, cε2, σk and σε, which we hope
should be universal i.e same for all types of flows. Simple flows are chosen
where the equation can be simplified and where experimental data are used
to determine the constants. The cµ constant was determined above (Sub-
section 3.2). The k equation in the logarithmic part of a turbulent boundary
layer was studied where the convection and the diffusion term could be
neglected.

In a similar way we can find a value for the cε1 constant . We look at the cε1 con-
stantε equation for the logarithmic part of a turbulent boundary layer, where the

convection term is negligible, and utilizing that production and dissipation
are in balance Pk = ρε, we can write Eq. 3.3 as

0 =
∂

∂y

[
µt

σε

∂ε

∂y

]

︸ ︷︷ ︸

Dε

+(cε1 − cε2) ρ
ε2

k
(3.17)

The dissipation and production term can be estimated as (see Sub-section 3.2)

ε =
k3/2

ℓ
(3.18)

Pk = ρ
u3∗
κy

,

which together with Pk = ρε gives

ℓ = κc−3/4
µ y. (3.19)

25



3.4 The k − ω Model 26

In the logarithmic layer we have that ∂k/∂y = 0, but from Eqs. 3.18, 3.19 we
find that ∂ε/∂y 6= 0. Instead the diffusion term in Eq. 3.17 can be rewritten
using Eqs. 3.18, 3.19, 3.16 as

Dε =
∂

∂y

[

µt

σε

∂

∂y

(

k3/2

κc
−3/4
µ y

)]

=
k2κ2

σεℓ2c
1/2
µ

(3.20)

Inserting Eq. 3.20 and Eq. 3.18 into Eq. 3.17 gives

cε1 = cε2 −
κ2

c
1/2
µ σε

(3.21)

The flow behind a turbulence generating grid is a simple flow which
allows us to determine the cε2 constant. Far behind the grid the velocity cε2 con-

stantgradients are very small which means that Pk = 0. Furthermore V = 0 and
the diffusion terms are negligible so that the modelled k and ε equations
(Eqs. 2.38, 3.2) read

ρŪ
dk

dx
= −ρε (3.22)

ρŪ
dε

dx
= −cε2ρ

ε2

k
(3.23)

Assuming that the decay of k is exponential k ∝ x−m, Eq. 3.22 gives ε ∝
−mx−m−1. Insert this in Eq. 3.22, derivate to find dε/dx and insert it into
Eq. 3.23 yields

cε2 =
m+ 1

m
(3.24)

Experimental data give m = 1.25 ± 0.06 [46], and cε2 = 1.92 is chosen.
We have found three relations (Eqs. 3.11, 3.21, 3.24) to determine three

of the five unknown constants. The last two constants, σk and σε, are opti-
mized by applying the model to various fundamental flows such as flow in
channel, pipes, jets, wakes, etc. The five constants are given the following
values: cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1.0, σε = 1.31.

3.4 The k − ω Model

The k − ω model is gaining in popularity. The model was proposed by
Wilcox [48, 49, 39]. In this model the standard k equation is solved, but as a
length determining equation ω is used. This quantity is often called specific
dissipation from its definition ω ∝ ε/k. The modelled k and ω equation read

(ρŪjk),j =

[(

µ+
µt

σω
k

)

k,j

]

,j

+ Pk − β∗ωk (3.25)
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3.5 The k − τ Model 27

(ρŪjω),j =

[(

µ+
µt

σω

)

ω,j

]

,j

+
ω

k
(cω1Pk − cω2ρkω) (3.26)

µt = ρ
k

ω
, ε = β∗ωk.

The constants are determined as in Sub-section 3.3: β∗ = 0.09, cω1 = 5/9,
cω2 = 3/40, σω

k = 2 and σω = 2.
When wall functions are used k and ω are prescribed as (cf. Sub-section 3.2):

kwall = (β∗)−1/2u2∗, ωwall = (β∗)−1/2 u∗
κy

. (3.27)

In regions of low turbulence when both k and ε go to zero, large numer-
ical problems for the k − ε model appear in the ε equation as k becomes
zero. The destruction term in the ε equation includes ε2/k, and this causes
problems as k → 0 even if ε also goes to zero; they must both go to zero
at a correct rate to avoid problems, and this is often not the case. On the
contrary, no such problems appear in the ω equation. If k → 0 in the ω
equation in Eq. 3.25, the turbulent diffusion term simply goes to zero. Note
that the production term in the ω equation does not include k since

ω

k
cω1Pk =

ω

k
cω1µt

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
∂Ūi

∂xj
= cω1β

∗

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
∂Ūi

∂xj
.

The standard k − ω model can – contrary to the standard k − ε model –
be used as a low-Re number model all the way to the wall (including the
viscous sublayer). In that case, the wall boundary condition for k is simply
k = 0 and ω is fixed at the wall-adjacent cells according to Eq. 4.26.

In Ref. [38] the k − ω model was used to predict transitional, recirculat-
ing flow.

3.5 The k − τ Model

One of the most recent proposals is the k − τ model of Speziale et al. [42]
where the transport equation for the turbulent time scale τ is derived. The
exact equation for τ = k/ε is derived from the exact k and ε equations. The
modelled k and τ equations read

(ρŪjk),j =

[(

µ+
µt

στ
k

)

k,j

]

,j

+ Pk − ρ
k

τ
(3.28)
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3.5 The k − τ Model 28

(ρŪjτ),j =

[(

µ+
µt

στ2

)

τ,j

]

,j

+
τ

k

[

(1− cε1)Pk + (cε2 − 1)
k

τ

]

(3.29)

+
2

k

(

µ+
µt

στ1

)

k,jτ,j −
2

τ

(

µ+
µt

στ2

)

τ,jτ,j

µt = cµρkτ, ε = k/τ

The constants are: cµ, cε1 and cε2 are taken from the k − ε model, and στ
k =

στ1 = στ2 = 1.36.
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