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UNIT V – FLOW FIELD ANALYSIS AND TURBULENCE MODELS 

Low Reynolds Number Models 

In the previous section, we discussed all the functions that are used to reduce the number of 

cells. However, we must be aware that this is an approximation which, if the flow near the 

boundary is important, can be rather crude. In many internal flows – where all boundaries are 

either walls, symmetry planes, inlets, or outlets – the boundary layer may not be that important, 

as the flow field is often pressure-determined. For external flows (for example flow around 

cars, ships, airplanes, etc.), however, the flow conditions in the boundaries are almost 

invariably important. When we are predicting heat transfer it is in general a good idea to use 

wall functions because the heat transfer at the walls is very important for the temperature field 

in the whole domain. 

When we choose not to use wall functions, we thus insert sufficiently many grid lines near 

solid boundaries so that the boundary layer can be adequately resolved. However, when the 

wall is approached the viscous effects become more important and for y+ < 5 the flow is viscous 

dominating, i.e. the viscous diffusion is much larger than the turbulent one (see Fig. 4.1). Thus, 

the turbulence models presented so far may not be correct since fully turbulent conditions have 

been assumed; this type of models are often referred to as high-Re number models. In this 

section, we will discuss modifications of high-Re number models so that they can be used down 

to the wall. These modified models are termed low Reynolds number models. Please note that 

“high Reynolds number” and “low Reynolds number” do not refer to the global Reynolds 

number (for example ReL, Rex, Rex, etc.) but here we are talking about the local turbulent 

Reynolds number Reℓ = Uℓ/ν formed by a turbulent fluctuation and turbulent length scale. This 

Reynolds number varies throughout the computational domain and is proportional to the ratio 



 

 

 

 

Page 2 of 3 

 

Dr.A.Arun Negemiya, ASP / 19ASB304 - CFD for Aerospace Application 

of the turbulent and physical viscosity νt/ν, i.e. Reℓ ∝ νt/ν. This ratio is 100 or more prominent 

in fully turbulent flow and goes to zero when a wall is approached. 

We start by studying how various quantities behave close to the wall when y → 0. Taylor 

expansion of the fluctuating velocities ui (also valid for the mean velocities ¯Ui) gives 

 

 

where a0 . . . c2 are functions of space and time. At the wall, we have no slip, i.e. u = v = w = 0 

which gives a0 = b0 = c0. Furthermore, at the wall ∂u/∂x = ∂w/∂z = 0, and the continuity equation 

gives ∂v/∂y = 0 so that 
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4.1 Low-Re k − ε Models 31
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Figure 4.2: Flow between two parallel plates. Direct numerical simula-
tions [24]. Re = UCδ/ν = 7890. u∗/UC = 0.050. Fluctuating velocity

components u′i =
√

u2i.

the exact k equation near the wall (see Eq. 2.24).

∂ρŪk

∂x
+

∂ρV̄ k

∂y
= −ρuv

∂Ū

∂y
︸ ︷︷ ︸

O(y3)

−∂pv

∂y
− ∂

∂y

(
1

2
ρvuiui

)

︸ ︷︷ ︸

O(y3)

+ µ
∂2k

∂y2
− µui,jui,j
︸ ︷︷ ︸

O(y0)

(4.4)

The pressure diffusion ∂pv/∂y term is usually neglected, partly because it
is not measurable, and partly because close to the wall it is not important,
see Fig. 4.3 (see also [31]). The modelled equation reads

∂ρŪk

∂x
+

∂ρV̄ k

∂y
= µt

(
∂Ū

∂y

)2

︸ ︷︷ ︸

O(y4)

+
∂

∂y

(
µt

σk

∂k

∂y

)

︸ ︷︷ ︸

O(y4)

+ µ
∂2k

∂y2
− ρε
︸︷︷︸

O(y0)

(4.5)

When arriving at that the production term is O(y4) we have used

νt = cµρ
k2

ε
=

O(y4)

O(y0)
= O(y4) (4.6)

Comparing Eqs. 4.4 and 4.5 we find that the dissipation term in the mod-
elled equation behaves in the same way as in the exact equation when
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Figure 4.3: Flow between two parallel plates. Direct numerical simula-
tions [24]. Re = UCδ/ν = 7890. u∗/UC = 0.050. Energy balance in k
equation. Turbulent diffusion by velocity triple correlations DT , Turbulent
diffusion by pressure Dp, and viscous diffusion Dν . All terms have been
scaled with u4∗/ν.

y → 0. However, both the modelled production and the diffusion term
are of O(y4) whereas the exact terms are of O(y3). This inconsistency of
the modelled terms can be removed by replacing the cµ constant by cµfµ
where fµ is a damping function fµ so that fµ = O(y−1) when y → 0 and
fµ → 1 when y+ ≥ 50. Please note that the term “damping term” in this
case is not correct since fµ actually is augmenting µt when y → 0 rather
than damping. However, it is common to call all low-Re number functions
for “damping functions”.

Instead of introducing a damping function fµ, we can choose to solve
for a modified dissipation which is denoted ε̃, see Ref. [28] and Section 4.2.

It is possible to proceed in the same way when deriving damping func-
tions for the ε equation [42]. An alternative way is to study the modelled ε
equation near the wall and keep only the terms which do not tend to zero.
From Eq. 3.3 we get

∂ρŪε

∂x
︸ ︷︷ ︸

O(y1)

+
∂ρV̄ ε

∂y
︸ ︷︷ ︸

O(y1)

= cε1
ε

k
Pk

︸ ︷︷ ︸

O(y1)

+
∂

∂y

(
µt

σε

∂ε

∂y

)

︸ ︷︷ ︸

O(y2)

+ µ
∂2ε

∂y2
︸ ︷︷ ︸

O(y0)

− cε2ρ
ε2

k
︸ ︷︷ ︸

O(y−2)

(4.7)

where it has been assumed that the production term Pk has been suitable
modified so that Pk = O(y3). We find that the only term which do not
vanish at the wall are the viscous diffusion term and the dissipation term
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4.2 The Launder-Sharma Low-Re k − ε Models 33

so that close to the wall the dissipation equation reads

0 = µ
∂2ε

∂y2
− cε2ρ

ε2

k
. (4.8)

The equation needs to be modified since the diffusion term cannot balance
the destruction term when y → 0.

4.2 The Launder-Sharma Low-Re k − ε Models

There are at least a dozen different low Re k − ε models presented in the
literature. Most of them can be cast in the form [35] (in boundary-layer
form, for convenience)

∂ρŪk

∂x
+

∂ρV̄ k

∂y
=

∂

∂y

[(

µ+
µt

σk

)
∂k

∂y

]

+ µt

(
∂Ū

∂y

)2

− ρε (4.9)

∂ρŪ ε̃

∂x
+

∂ρV̄ ε̃

∂y
=

∂

∂y

[(

µ+
µt

σε

)
∂ε̃

∂y

]

+ c1εf1
ε̃

k
µt

(
∂Ū

∂y

)2

− cε2f2ρ
ε̃2

k
+ E

(4.10)

µt = cµfµρ
k2

ε̃
(4.11)

ε = ε̃+D (4.12)

Different models use different damping functions (fµ, f1 and f2) and
different extra terms (D and E). Many models solve for ε̃ rather than for
ε where D is equal to the wall value of ε which gives an easy boundary
condition ε̃ = 0 (see Sub-section 4.3). Other models which solve for ε use
no extra source in the k equation, i.e. D = 0.

Below we give some details for one of the most popular low-Re k − ε
models, the Launder-Sharma model [28] which is based on the model of Launder-

SharmaJones & Launder [23]. The model is given by Eqs. 4.9, 4.10, 4.11 and 4.12

33



4.3 Boundary Condition for ε and ε̃ 34

where

fµ = exp

( −3.4

(1 +RT /50)2

)

f1 = 1

f2 = 1− 0.3 exp
(
−R2

T

)

D = 2µ

(

∂
√
k

∂y

)2

E = 2µ
µt

ρ

(
∂2Ū

∂y2

)2

RT =
k2

νε̃

(4.13)

The term E was added to match the experimental peak in k around y+ ≃
20 [23]. The f2 term is introduced to mimic the final stage of decay of turbu-
lence behind a turbulence generating grid when the exponent in k ∝ x−m

changes from m = 1.25 to m = 2.5.

4.3 Boundary Condition for ε and ε̃

In many low-Re k − ε models ε̃ is the dependent variable rather than ε.
The main reason is that the boundary condition for ε is rather complicated.
The largest term in the k equation (see Eq. 4.4) close to the wall, are the
dissipation term and the viscous diffusion term which both are of O(y0) so
that

0 = µ
∂2k

∂y2
− ρε. (4.14)

From this equation we get immediately a boundary condition for ε as

εwall = ν
∂2k

∂y2
. (4.15)

From Eq. 4.14 we can derive alternative boundary conditions. The exact
form of the dissipation term close to the wall reads (see Eq. 2.24)

ε = ν

{(
∂u

∂y

)2

+

(
∂w

∂y

)2
}

(4.16)

where ∂/∂y ≫ ∂/∂x ≃ ∂/∂z and ∂u/∂y ≃ ∂w/∂y ≫ ∂v/∂y have been
assumed. Using Taylor expansion in Eq. 4.1 gives

ε = ν
(

a21 + c21

)

+ . . . (4.17)
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In the same way we get an expression for the turbulent kinetic energy

k =
1

2

(

a21 + c21

)

y2 . . . (4.18)

so that
(

∂
√
k

∂y

)2

=
1

2

(

a21 + c21

)

. . . (4.19)

Comparing Eqs. 4.17 and 4.19 we find

εwall = 2ν

(

∂
√
k

∂y

)2

. (4.20)

In the Sharma-Launder model this is exactly the expression for D in Eqs. 4.12
and 4.13, which means that the boundary condition for ε̃ is zero, i.e. ε̃ = 0.

In the model of Chien [8], the following boundary condition is used

εwall = 2ν
k

y2
(4.21)

This is obtained by assuming a1 = c1 in Eqs. 4.17 and 4.18 so that

ε = 2νa21

k = a21y
2

(4.22)

which gives Eq. 4.21.

4.4 The Two-Layer k − ε Model

Near the walls the one-equation model by Wolfshtein [51], modified by
Chen and Patel [7], is used. In this model the standard k equation is solved;
the diffusion term in the k-equation is modelled using the eddy viscosity
assumption. The turbulent length scales are prescribed as [16, 11]

ℓµ = cℓn [1− exp (−Rn/Aµ)] , ℓε = cℓn [1− exp (−Rn/Aε)]

(n is the normal distance from the wall) so that the dissipation term in the
k-equation and the turbulent viscosity are obtained as:

ε =
k3/2

ℓε
, µt = cµρ

√
kℓµ (4.23)

The Reynolds number Rn and the constants are defined as

Rn =

√
kn

ν
, cµ = 0.09, cℓ = κc−3/4

µ , Aµ = 70, Aε = 2cℓ
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4.5 The low-Re k − ω Model 36

The one-equation model is used near the walls (for Rn ≤ 250), and the
standard high-Re k − ε in the remaining part of the flow. The matching line
could either be chosen along a pre-selected grid line, or it could be defined
as the cell where the damping function

1− exp (−Rn/Aµ)

takes, e.g., the value 0.95. The matching of the one-equation model and the
k − ε model does not pose any problems but gives a smooth distribution of
µt and ε across the matching line.

4.5 The low-Re k − ω Model

A model which is being used more and more is the k−ω model of Wilcox [48].
The standard k−ω model can actually be used all the way to the wall with-
out any modifications [48, 32, 37]. One problem is the boundary condition
for ω at walls since (see Eq. 3.26)

ω =
ε

β∗k
= O(y−2) (4.24)

tends to infinity. In Sub-section 4.3 we derived boundary conditions for
ε by studying the k equation close to the wall. In the same way we can
here use the ω equation (Eq. 3.26) close to the wall to derive a boundary
condition for ω. The largest terms in Eq. 3.26 are the viscous diffusion term
and the destruction term, i.e.

0 = µ
∂2ω

∂y2
− cω2ρω

2. (4.25)

The solution to this equation is

ω =
6ν

cω2y2
(4.26)

The ω equation is normally not solved close to the wall but for y+ < 2.5,
ω is computed from Eq. 4.26, and thus no boundary condition is actually
needed. This works well in finite volume methods but when finite element
methods are used ω is needed at the wall. A slightly different approach
must then be used [17].

Wilcox has also proposed a k − ω model [50] which is modified for vis-
cous effects, i.e. a true low-Re model with damping function. He demon-
strates that this model can predict transition and claims that it can be used
for taking the effect of surface roughness into account which later has been
confirmed [36]. A modification of this model has been proposed in [39].
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4.5 The low-Re k − ω Model 37

4.5.1 The low-Re k − ω Model of Peng et al.

The k − ω model of Peng et al. reads [39]

∂k

∂t
+

∂

∂xj
(Ūjk) =

∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

+ Pk − ckfkωk

∂ω

∂t
+

∂

∂xj
(Ūjω) =

∂

∂xj

[(

ν +
νt
σω

)
∂ω

∂xj

]

+
ω

k
(cω1fωPk − cω2kω) + cω

νt
k

(
∂k

∂xj

∂ω

∂xj

)

νt = fµ
k

ω

fk = 1− 0.722 exp

[

−
(
Rt

10

)4
]

fµ = 0.025 +

{

1− exp

[

−
(
Rt

10

)3/4
]}

{

0.975 +
0.001

Rt
exp

[

−
(

Rt

200

)2
]}

fω = 1 + 4.3 exp

[

−
(
Rt

1.5

)1/2
]

, fω = 1 + 4.3 exp

[

−
(
Rt

1.5

)1/2
]

ck = 0.09, cω1 = 0.42, cω2 = 0.075

cω = 0.75, σk = 0.8, σω = 1.35

(4.27)

4.5.2 The low-Re k − ω Model of Bredberg et al.

A new k−ω model was recently proposed by Bredberg et al. [5] which reads

∂k

∂t
+

∂

∂xj
(Ūjk) = Pk − Ckkω +

∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

∂ω

∂t
+

∂

∂xj
(Ūjω) = Cω1

ω

k
Pk − Cω2ω

2+

Cω

(ν

k
+

νt
k

) ∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[(

ν +
νt
σω

)
∂ω

∂xj

]

(4.28)

The turbulent viscosity is given by

νt = Cµfµ
k

ω

fµ = 0.09 +

(

0.91 +
1

R3
t

)[

1− exp

{

−
(
Rt

25

)2.75
}] (4.29)
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4.5 The low-Re k − ω Model 38

with the turbulent Reynolds number defined as Rt = k/(ων). The constants
in the model are given as

Ck = 0.09, Cµ = 1, Cω = 1.1, Cω1 = 0.49,

Cω2 = 0.072, σk = 1, σω = 1.8
(4.30)
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