ARMSTRONG AXIOMS FOR FUNCTIONAL DEPENDENCIES

Functional Dependency is a crucial concept in Database Management Systems (DBMS). It helps in maintaining data integrity. Armstrong Axioms in DBMS, is a set of rules that play a fundamental role in defining and simplifying functional dependencies within a relational database.

Axioms (Primary rules)

• Axiom of Reflexivity: If A is a set of attributes and B is a subset of A, then A holds B. If $B \subseteq A$ then $A \rightarrow B$. This property is a trivial property.

/*

The Axiom of Reflexivity is the foundational principle stating that if you have a set of attributes, a functional dependency exists between that set and itself. In simpler terms, it means that any set of attributes functionally determines itself.

Example: In a student database, if we have an attribute 'Student_ID,' it is trivially true that 'Student_ID' determines 'Student_ID.'

*/

Axiom of Augmentation: If A→B holds and Y is the attribute set, then AY→BY also holds. That is adding attributes to dependencies does not change the basic dependencies. If A→B, then AC→BC for any C.

Example:

If 'Student_ID' determines 'Student_Name,' then it also implies that 'Student_ID, Course_Code' determines 'Student_Name, Course_Code.'

• Axiom of Transitivity: Same as the transitive rule in algebra, if $A \rightarrow B$ holds and $B \rightarrow C$ holds, then $A \rightarrow C$ also holds. $A \rightarrow B$ is called A functionally which determines B. If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.

Example:

If 'Student_ID' determines 'Course_Code' and 'Course_Code' determines 'Course_Name,' then 'Student_ID' determines 'Course_Name.'

Secondary Rules

These rules can be derived from the above axioms.

• Union: If $A \rightarrow B$ holds and $A \rightarrow C$ holds, then $A \rightarrow BC$ holds. If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$.

Example:

If 'A' determines 'B' and 'A' determines 'C,' then we can derive 'A' determines 'B, C.'

• Composition: If $A \rightarrow B$ and $X \rightarrow Y$ hold, then $AX \rightarrow BY$ holds.

Example:

If 'A' determines 'B' and 'C' determines 'D,' we can compose these to derive 'A, C' determines 'B, D.' • Decomposition: If $A \rightarrow BC$ holds then $A \rightarrow B$ and $A \rightarrow C$ hold. If $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$.

Example:

If 'A, B' determines 'C, D' we can decompose it into 'A' determines 'C' and 'B' determines 'D.'

• **Pseudo Transitivity:** If $A \rightarrow B$ holds and $BC \rightarrow D$ holds, then $AC \rightarrow D$ holds. If $X \rightarrow Y$ and $YZ \rightarrow W$ then $XZ \rightarrow W$.

Example:

If 'A' determines 'B, C' and 'C' determines 'D,' we can use pseudo transitivity to infer that 'A' determines 'B, D.'

Self Determination: It is similar to the Axiom of Reflexivity, i.e. A→A for any A.

Example:

If 'A' determines 'B,' then 'A' determines 'A.'

Extensivity: Extensivity is a case of augmentation. If AC→A, and A→B, then AC→B. Similarly, AC→ABC and ABC→BC. This leads to AC→BC.

Example:

If 'A' determines 'B,' then 'A' determines 'B, C' (for any 'C').