
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS 

ENGINEERING

COURSE NAME: 19EEB303 / Microcontroller and its Applications

III YEAR / VI SEMESTER

Unit II – PIC MICROCONTROLLER

Topic : Interrupts

3/23/2025 123EEB210/EMD/Dr.D.Revathi/AP/EEE



INTERRUPTS

23/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

• Interrupts are basically internal/external 

signals that suspend the main routine being 

done/executed. While reading this article, your 

main routine is “Reading The Tutorial”. This 

main routine could be interrupted by many 

sudden events. If your phone suddenly started 

ringing during the “Reading” process, The 

main routine “Reading” will be suspended 

“Interrupted”.



INTERRUPTS

33/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Interrupts could be classified based on the source of the interrupt
signal, and also based on the way it’s implemented in memory.
Interrupt signals could be generated by hardware or software.
Interrupts could be implemented in memory as vectored or non-
vectored interrupts. So, let’s classify interrupts in more detail.

Interrupt Sources

Software Interrupts

• The programmer (you and me) can purposely fire an interrupt signal
whenever he wants using specific instructions (e.g. SWI). This type
of interrupt signals is said to be software interrupts. Because the
signal’s source is a software instruction. We may not use such a
thing during this series of tutorials. However, you should know that
many CPUs has specific instructions that generate a software
interrupt signal.



INTERRUPTS

43/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Hardware Interrupts

Almost all the peripherals/modules within a microcontroller
generate interrupt signals to indicate various events. That’s
why this tutorial precedes most of the upcoming modules.
Such as Timers, CCP, SPI, UART, I2C, ADC, EEPROM, etc..
All of these modules generate interrupt signals to indicate
starting, termination or failure of their current operation.

• You should also note that hardware interrupts could be
internally or externally triggered. That’s why many authors in
our literature call internal modules interrupts “Internal“, and
the externally triggered interrupts “External” interrupts.
Anyway, hardware interrupts are the most common ones, and
it’s our job to efficiently handle them!



INTERRUPTS

53/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Vectored Interrupts

For vectored interrupts, the CPU knows exactly the address of the ISR
handler. The CPU has these addresses pre-defined in memory
(interrupt table) in advance. When a vectored interrupt is fired, the
interrupting module/device sends its specific vector to the CPU via
the data bus. Then, the CPU will perform a look-up in the interrupt
table in memory. And then it branches to the ISR handler code
associated to the interrupting device and executes it.

Non-Vectored Interrupts

• For non-vectored interrupts, the CPU has a hardware fixed address
called the interrupt vector. When an interrupt is fired, the CPU will
push the PC to the stack. Then it’ll jump to the interrupt vector
address and then branches to the ISR handler code. Which is a
hard-coded ISR in a specific portion of the memory.



INTERRUPTS

63/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

InIn the microcontroller we’re using (PIC16F877A), the 

interrupts are non-vectored in memory. So there is a 

common interrupt vector @ the address 0004h, which is 

always skipped over while executing the firmware in the 

program memory. This process is indicated in the figure 

below



INTERRUPTS

73/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

As we previously mentioned, there is no marker to help the CPU keep track of
the last instruction was being executed when the interruption occurred.
That’s why there is a hardware implemented program stack.

The program stack is basically an 8-levels (8-Registers) structure that holds
the addresses of program instructions to be executed. It’s a LIFO structure
which means Last-In-First-Out, The last PUSHed address is the first POPed
one. Before executing any instruction, its address is PUSHed to the stack.

Whenever an interrupt occurs, the CPU will PUSH the next instruction’s
address in the stack. Then the address of the interrupt vector is
automatically pushed to the PC so that the CPU branches directly to the
ISR handler code to execute it. And when it’s done with the ISR, the CPU
will automatically perform the RETFIE instruction to return from the interrupt
service routine to the main routine (program). Which obviously POPs the
last instruction’s address saved in the stack. Which was the next instruction
to be executed before the interruption!



INTERRUPTS

83/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Interrupt Circuitry

• The interrupt circuitry is the digital logic 

circuit that drives the interruption systems 

within the microcontroller. We use this 

circuit for both configuring & handling 

interrupts. The diagram could be easily 
found in the datasheet



INTERRUPTS

93/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE



INTERRUPTS

103/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE



INTERRUPTS

113/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

There is only one wire coming out of the interrupt
circuitry and heading to the CPU. This is because
our interrupts are non-vectored so they do share
one common interruption signal to the CPU which
has no idea about the device that fired the
interrupt signal.

• Configuring an interrupt source is the first step in
working with interrupts. Enabling the ADC interrupt
will result in firing an interrupt signal upon each
successful ADC conversion process to notify the
CPU about it. To enable the ADC interrupt signal
you should obviously set all the bits in the way
between that module & the CPU



INTERRUPTS

123/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE



INTERRUPTS

133/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Set the ADCIE, PEIE, and GIE bits. Now, when an ADC
conversion is complete. The ADCIF will be set, and the
1(High) signal will reach the CPU to notify it that an interrupt
has occurred. But, the CPU now has no idea about which
module has generated this signal.

There are interrupt flag bits, these bits are set upon devices’
interruption respectively. If an ADC conversion is complete,
the ADCIF flag bit is set. If Timer1 has reached overflow state,
the TMR1IF flag bit is set. And so on.

• Upon receiving interrupt signal, the CPU PUSHes the
machine state in the stack and branches to the ISR handler.
In which we must first poll (check) the Flag Bits, in order to
determine the interruption source to service it respectively.



INTERRUPTS

143/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

• The registers which control the interrupt 
circuitry are the following 5-Registers

• These registers contain both the interrupt 
enable bits and the interrupt flag bits. For 
each interruption source (up to 15). In MPLAB 
XC8, we’ve bit-fields with the same names 
found in the datasheet for these bits. 

INTCON PIE1 PIE2 PIR1 PIR2



INTERRUPTS

153/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Registers Used to Process Interrupts
Interrupt Control Register

INTCON register

GIE - Global Interrupt Enable

PEIE - Peripheral Interrupt Enable

TMR0IE - Timer0 Interrupt Enable

INTE - External Interrupt Enable

IOCIE - Interrupt on Change Enable

TMR0IF - Timer0 Interrupt flag

INTF - External Interrupt flag

IOCIF - Interrupt on Change flag

INTCON contains global and peripheral interrupt enable flags as well as the individual interrupt request 

flags and interrupt enable flags for three of the PIC16F1xxxx interrupts.



INTERRUPTS

163/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

Interrupt Enable Registers

PIE1 register

MR1GIE - Timer1 Gate 

Interrupt Enable

ADIE - Analog-to-Digital Converter (ADC) Interrupt Enable

RCIE - Universal Synchronous Asynchronous Receiver Transmitter (USART) Receive Interrupt Enable

TXIE - USART Transmit Interrupt Enable

SSPIE - Synchronous Serial Port (MSSP) Interrupt Enable

CCP1IE - CCP1 Interrupt Enable

TMR2IE - Timer2 Interrupt Enable

TMR1IE - Timer1 Interrupt Enable



INTERRUPTS

173/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

PIE2 register

OSFIE - Oscillator Fail Interrupt Enable

C2IE - Comparator C2 Interrupt Enable

C1IE - Comparator C1 Interrupt Enable

EEIE - EEPROM Write Completion Interrupt Enable

BCLIE - MSSP Bus Collision Interrupt Enable

LCDIE - LCD Module Interrupt Enable

--- - Unimplemented, read as 0

CCP2IE - CCP2 Interrupt Enable



INTERRUPTS

183/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

PIE3 register

--- - Unimplemented read as 0

CCP5IE - CCP5 Interrupt Enable

CCP4IE - CCP4 Interrupt Enable

CCP3IE - CCP3 Interrupt Enable

TMR6IE - Timer6 Interrupt Enable

--- - Unimplemented, read as 0

TMR4IE - Timer4 Interrupt Enable

--- - Unimplemented, read as 0



INTERRUPTS

193/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

OPTION_REG

The INTEDG flag in OPTION_REG is used to set a rising or failing edge on the INT pin as the 

trigger for an INTE interrupt.



VIDEOS

Web link

https://developerhelp.microchip.com/xwiki/bin/view/products/

mcu-mpu/8bit-pic/peripherals/interrupts/

203/23/2025 23EEB210/EMD/Dr.D.Revathi/AP/EEE

https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/8bit-pic/peripherals/interrupts/

