

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING

II YEAR IV SEM

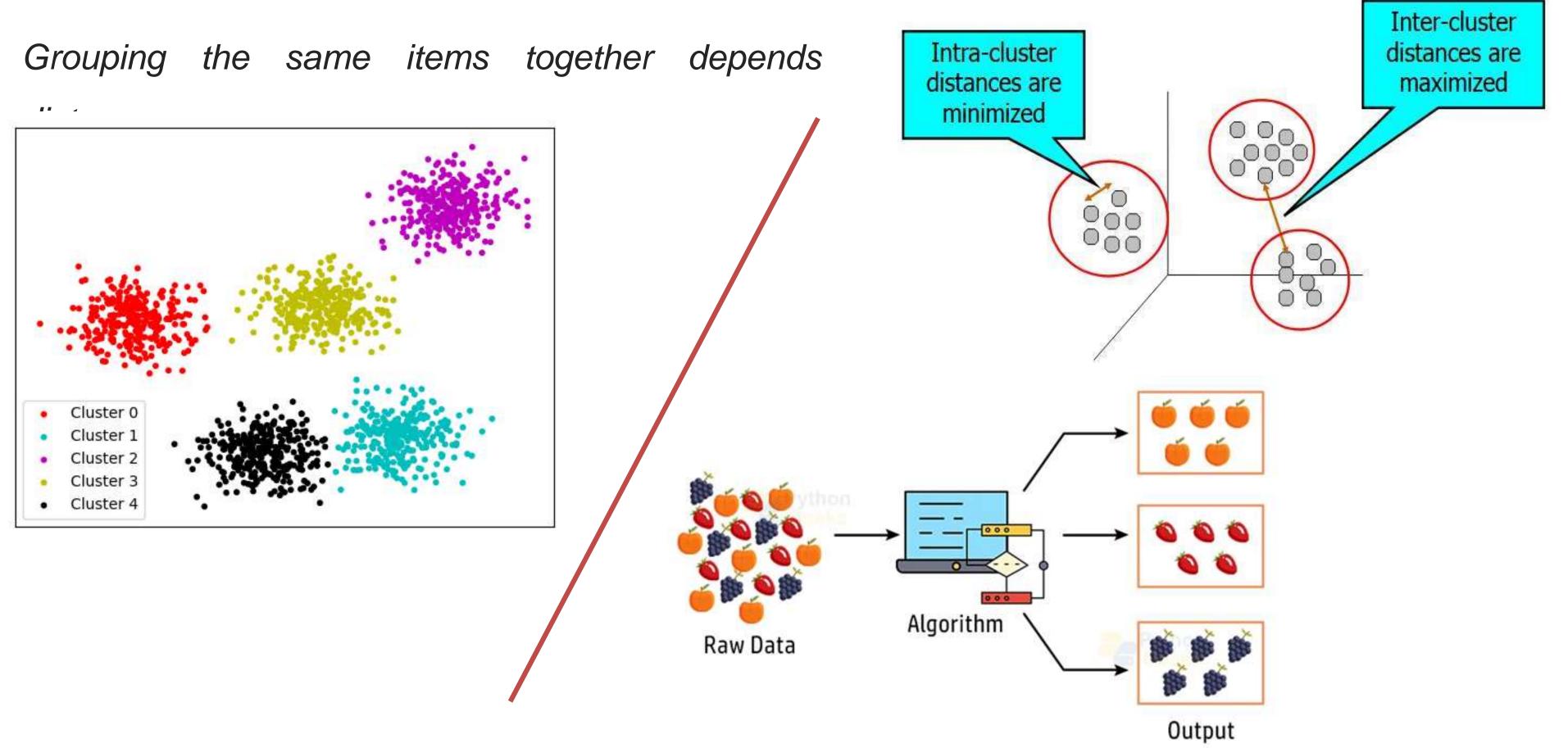
UNIT IV – UNSUPERVISED LEARNING ALGORITHM

TOPIC 22 – Clustering – K-Means

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Clustering



What is Clustering?

• **Clustering** is the <u>classification</u> of objects into different groups, or more precisely, the <u>partitioning</u> of a <u>data set</u> into <u>subsets</u> (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined <u>distance measure</u>.

• Applications:

- 1. Market Segmentation
- 2. Statistical data analysis
- 3. Social network analysis
- 4. Image segmentation
- 5. Amazon and Netflix

Types of Clustering

- 1. Hierarchical algorithms: Find successive clusters
 - **1.Agglomerative** ("bottom-up"): Begins with each element as a separate cluster and merge them into successively larger clusters.
 - **2.Divisive** ("top-down"): Begins with the whole set and proceed to divide it into successively smaller clusters.
- **2. Partitional clustering:** Partitional algorithms determine all clusters at once. They include:

K-means and derivatives

Fuzzy *c*-means clustering

- 3. Density based clustering
- 4. Fuzzy clustering

Common Distance measures

• *Distance measure* will determine how the *similarity* of two elements is calculated and it will influence the shape of the clusters.

They include:

1. The **Euclidean distance** (also called 2-norm distance) is given by:

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

2. The Manhattan distance (also called taxicab norm or 1-norm) is given by:

$$d(x, y) = \sum_{i=1}^{m} |x_i - y_i|$$

Common Distance measures

3. The <u>maximum norm</u> is given by: $d(x, y) = \max_{1 \le t \le p} |x_t - y_t|$

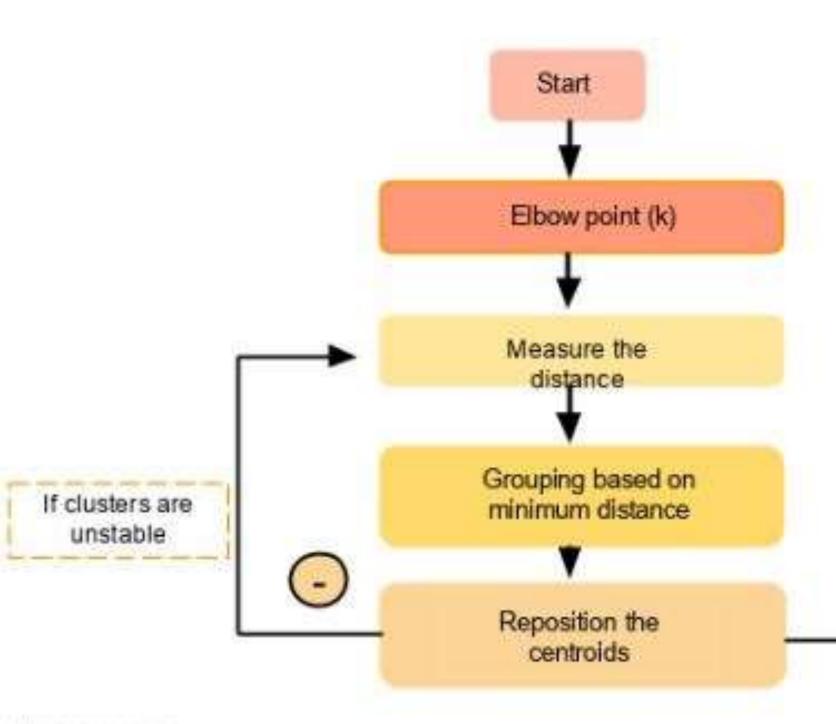
4. <u>Hamming distance</u> (sometimes edit distance) measures the minimum number of substitutions required to change one member into another.

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

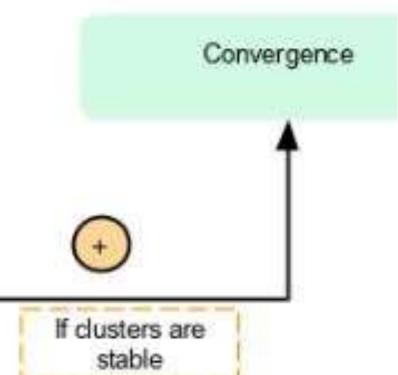
K-MEANS CLUSTERING

- K-Means Clustering is an Unsupervised Machine Learning algorithm which groups the unlabeled dataset into different clusters.
- The **k-means algorithm** is an algorithm to <u>cluster</u> n objects based on attributes into k <u>partitions</u>, where k < n.
- K-means clustering is a technique used to organize data into groups based on their similarity.
- For example online store uses K-Means to group customers based on purchase frequency and spending creating segments like:
 - Budget Shoppers
 - Frequent Buyers
 - Big Spenders for personalised marketing.

K-MEANS CLUSTERING-work flow



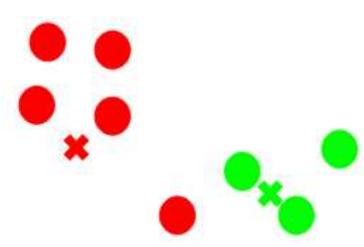
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change



How to Apply K-Means Clustering Algorithm?

Dataset

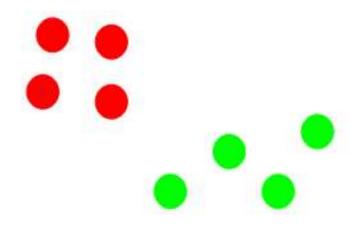
Recompute the centroids of newly formed clusters



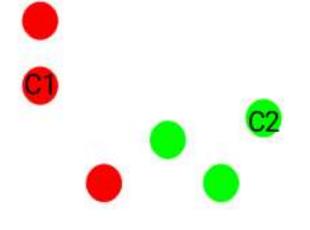
Choose the number of clusters k



Repeat steps 3 and 4



Assign all the points to the closest cluster Centroid



Stopping Criteria for K-Means Clustering

- 1. Centroids of newly formed clusters do not change
- 2. Points remain in the same cluster
- 3. Maximum number of iterations is reached

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

Iteration 1

M1, M2 are the two randomly selected centroids/means where

and the initial clusters are

Calculate the Euclidean distance as

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Datapoint	D1	D2	Cluster
2	2	9	C1
4	0	7	C1
10	6	1	C2
12	8	1	C2
3	1	8	C1
20	16	9	C2
30	26	19	C2
11	7	0	C2
25	21	14	C2

Therefore

$$C1 = \{2, 4, 3\}$$

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Datapoint	D1	D2	Cluster
2	2	9	C1
4	0	7	C1
10	6	1	C2
12	8	1	C2
3	1	8	C1
20	16	9	C2
30	26	19	C2
11	7	0	C2
25	21	14	C2

Iteration 1

Therefore

 $C1 = \{2, 4, 3\}$

C2= {10, 12, 20, 30, 11, 25}

New Clusters

$$M1=(2+3+4)/3=3$$

Datapoint	D1	D2	Cluster
2	1	16	C1
4	1	14	C1
3	0	15	C1
10	7	8	C1
12	9	6	C2
20	17	2	C2
30	27	12	C2
11	8	7	C2
25	22	7	C2

Iteration 2

New Clusters

 $C1 = \{2, 3, 4, 10\}$

C2= {12, 20, 30, 11, 25}

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Datapoint	D1	D2	Cluster
2	1	16	C1
4	1	14	C1
3	0	15	C1
10	7	8	C1
12	9	6	C2
20	17	2	C2
30	27	12	C2
11	8	7	C2
25	22	7	C2

Iteration 2

Datapoint	D1	D2	Cluster
2	2.75	17.6	C1
4	0.75	15.6	C1
3	1.75	16.6	C1
10	5.25	9.6	C1
12	7.25	7.6	C1
20	15.25	0.4	C2
30	25.25	10.4	C2
11	6.25	8.6	C1
25	20.25	5.4	C2

Iteration 3

New Clusters

 $C1 = \{2, 3, 4, 10, 12, 11\}$

 $C2=\{20, 30, 25\}$

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Datapoint	D1	D2	Cluster
2	2.75	17.6	C1
4	0.75	15.6	C1
3	1.75	16.6	C1
10	5.25	9.6	C1
12	7.25	7.6	C1
20	15.25	0.4	C2
30	25.25	10.4	C2
11	6.25	8.6	C1
25	20.25	5.4	C2

Iteration 3

New Clusters C1= {2, 3, 4, 10, 12, 11} C2= {20, 30, 25}

Datapoint	D1	D2	Cluster
2	5	23	C1
4	3	21	C1
3	4	22	C1
10	3	15	C1
12	5	13	C1
11	4	14	C1
20	13	5	C2
30	23	5	C2
25	18	0	C2

Iteration 4

New Clusters C1= {2, 3, 4, 10, 12, 11} C2= {20, 30, 25}

No Change between Iteration 3 and 4

References

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, —Learning from Data, AML Book Publishers, 2012.

P. Flach, —Machine Learning: The art and science of algorithms that make sense of datal, Cambridge University Press, 2012.

W3school.com

https://discourse.opengenus.org/t/using-id3-algorithm-to-build-a-decision-tree-to-predict-the-weather/3343

