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What is Clustering?

e Clustering is the classification of objects into different groups, or more precisely, the
partitioning of a data set into subsets_(clusters), so that the data in each subset

(ideally) share some common trait - often according to some defined distance measure.
e Applications:
1. Market Segmentation
2. Statistical data analysis
3. Social network analysis
4. Image segmentation

5. Amazon and Netflix
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http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Metric_(mathematics)

Types of Clustering .

NS e

1. Hierarchical algorithms: - Find successive clusters
1.Agglomerative ("bottom-up"): Begins with each element as a separate cluster and
merge them into successively larger clusters.
2.Divisive ("top-down"): Begins with the whole set and proceed to divide it into
successively smaller clusters.
2. Partitional clustering: Partitional algorithms determine all clusters at once.They
include:
K-means and derivatives
Fuzzy c-means clustering
3. Density based clustering

4. Fuzzy clustering
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Common Distance measures

e Distance measure will determine how the similarity of two elements is calculated and it will influence
the shape of the clusters.
They include:

1. The Euclidean distance_(also called 2-norm distance) is given by:

d(p,q) = \ Z(Qz —Pz‘)2

2. The Manhattan distance_(also called taxicab norm or 1-norm) is given by:

m
e N
d(x;y) = D IX;:=¥;
£ |
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http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Manhattan_distance

Common Distance measures

dix, v)=max| xi— ¥

3. The.maximum norm is given by:

4. Hamming distance_(sometimes edit distance) measures the minimum number of

substitutions required to change one member into another.

'y
Dy = Z‘*Tr' — Vi
=1
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http://en.wikipedia.org/wiki/Maximum_norm
http://en.wikipedia.org/wiki/Hamming_distance

K-MEANS CLUSTERING

e K-Means Clustering is an Unsupervised Machine Learning algorithm which groups the unlabeled
dataset into different clusters.
e The k-means algorithm is an algorithm to cluster_n objects based on attributes into k partitions,
where k < n.
e K-means clustering is a technique used to organize data into groups based on their similarity.
e For example online store uses K-Means to group customers based on purchase frequency and
spending creating segments like:
e Budget Shoppers
e Frequent Buyers

e Big Spenders for personalised marketing.
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http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Partition_of_a_set

K-MEANS CLUSTERING-work flow

1: Select K points as the initial centroids.

IS

Start 2: repeat
* 3:  Form K clusters by assigning all points to the closest centroid.
e e 4:  Recompute the centroid of each cluster.
* 5: until The centroids don’t change
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How to Apply K-Means Clustering Algorithm?

Dataset Recompute the centroids of newly formed clusters
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Stopping Criteria for K-Means Clustering -

1. Centroids of newly formed clusters do not change
2. Points remain in the same cluster

3. Maximum number of iterations is reached
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A Simple example showing the implementation
of k-means algorithm (using K=2)

J

LI 1971575

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

Datapoint D1 D2 Cluster
2 2 S C1l
Tteration 1 4 0 7 C1
10 o) 1 C2
M1, M2 are the two randomly selected centroids/means where 12 g 1 C2
3 1 3 Cl
M1=4, M2=11 20 16 S C2
30 26 19 C2
and the initial clusters are 12 { & St
25 21 14 Cc2
Cl= {4}’ C2= {11} Therefore
2 a Cl1=12,4, 3}
Calculate the Euclidean distance as
C2= {10, 12, 20, 30, 11, 25}
n
2
d(p,q) = (¢; — p;)
i=1
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A Simple example showing the implementation
of k-means algorithm (using K=2)

VST 28

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

- ) Datapoint | D1 D2 | Cluster
d(p’ q) — Z(QZ T pz) 2 2 9 C1
t=1 4 0 7 c1
10 %) 1 C2
12 8 | C2 Datapoint D1 D2 Cluster
3 1 3 Cl 2 3 16 C1l
20 16 - C2 4 1 14 &
30 26 19 C2 3 0 15 C1
11 7 0 C2 10 7 8 Cl
25 21 14 C2 12 9 C2
20 17 2 C2
iteration 1 30 27 12 Cc2
New Clusters 11 & 7 2
Therefore 25 22 7 C2
= + <44 e
p) 2

= (10+12+20+30+11+25)/6=
C2=1{10, 12, 20, 30, 11, 25} M= (DR L)1 New Clusters

Cl={2, 3, 4, 10}
C2= {12, 20, 30, 11, 25}
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A Simple example showing the implementation
of k-means algorithm (using K=2)

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25}

Datapoint D1 D2 Cluster
= 2 2.75 17.6 C1
d(p,q) = d Y (6 -p)° < = =
1 3 1.75 16.6 C1
10 5.25 9.6 5 |
Datapoint D1 D2 Cluster 12 7.25 7.6 1
2 1 16 C1 20 15.25 0.4 C2
4 1 14 ci 30 25.25 10.4 C2
3 0 15 C1l 11 6.25 3.6 C1i
10 7 8 C1 25 20.25 5.4 C2
12 9 3] C2
20 17 2 Cc2 lteration 3
30 27 12 c2
11 3 - c2 New Clusters
25 22 7 c2 New Clusters C1=12, 3,4, 10, 12, 11}
lteration 2 C2= {20’ 30, 25}

M1= (2+3+4+10)/4= 4.75
M2= (12+20+30+11+25)/5= 19.6

New Clusters
C1={2, 3, 4, 10}
C2= {12, 20, 30, 11, 25}
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A Simple example showing the implementation
of k-means algorithm (using K=2)

Data set {2, 4, 10, 12, 3, 20, 30, 11, 25} Datapoint D1 D2 Cluster
2 S5 23 Cl
n 4 3 21 Cl
d(p,q) = d Z(qz —pi)z 3 4 22 ci
=1 10 3 15 C1l
12 ) 13 Cl
. 11 4 14 C1l
Datapoint D1 D2 Cluster 20 13 5 )
2 2.75 17.6 c1 == -~ - c2
4 0.75 15.6 c1 e = : >
3 1.75 16.6 Cl
10 9.25 9.6 Cl lteration 4
12 7.25 7.6 C1l New Clusters
20 15.25 0.4 c2 Cl= {2, 3, 4, 10, 12, 11}
30 25.25 10.4 c2 C2= {20, 30, 25}
11 6.25 3.6 C1i
25 20.25 5.4 C2

New Clusters No Change between lteration 3 and 4

M1= (243+4+10412+11)/6=7
M2= (20+30+25)/3= 25

lteration 3 New Clusters
Cl=1{2, 3,4, 10, 12, 11}
C2= {20, 30, 25}
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