

PART A

1. If $\phi = x^2 + y^2 + z^2$, find $\nabla \phi$ at (1,1,-1)

Sub (iii) in (i), we get

$$\nabla \phi = \vec{i}(2x) + \vec{j}(2y) + \vec{k}(2z)$$

There fore, $(\nabla \phi)_{at(1,1,-1)} = 2\vec{i} + 2\vec{j} - 2\vec{k}$

2. Find grad r^n , where $r = |\vec{r}|$ and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

Given,
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

 $|\vec{r}| = r = \sqrt{x^2 + y^2 + z^2}$
 $r^2 = x^2 + y^2 + z^2$ (i)

Diff (i) partially w.r.t 'x'

$$2r \frac{\partial r}{\partial x} = 2x$$

$$\Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r}$$

$$\frac{\partial r}{\partial y} = \frac{y}{r} \text{ and } \frac{\partial r}{\partial z} = \frac{z}{r}$$

$$\therefore \text{ gradr}^{n} = \nabla r^{n}$$

$$= \sum_{i} \vec{i} \frac{\partial}{\partial x} (r^{n})$$

$$= \sum_{i} \vec{i} \frac{\partial}{\partial x} (r^{n}) \cdot \frac{\partial r}{\partial x}$$

$$= \vec{i} \cdot n \cdot r^{n-1} \cdot \frac{x}{r}$$

$$= \vec{i} \cdot n \cdot r^{n-2} \cdot x$$

$$= n \cdot r^{n-2} \left[x\vec{i} + y\vec{j} + z\vec{k} \right]$$

$$= n \cdot r^{n-2} \vec{r}$$

3. Find the unit vector normal to the surface $x^2+y^2-z=10$ at (1,1,1).

Given
$$\phi = x^2 + y^2 - z = 10$$

$$\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$

$$= 2x\vec{i} + 2y\vec{j} - \vec{k}$$

$$\therefore (\nabla \phi)_{at(1,1,1)} = 2\vec{i} + 2\vec{j} - \vec{k}$$

$$|\nabla \phi| = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$$

Unit normal vector $\hat{\mathbf{n}} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{2\vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}}{3}$

4. Find the directional derivative of $\phi = xy + yz + xz$ at the point (1,2,3) in the direction $3\vec{i} + 4\vec{j} + 5\vec{k}$.

Given,
$$\phi = xy + yz + xz$$
 -----(i)

Let
$$\vec{n} = 3\vec{i} + 4\vec{j} + 5\vec{k}$$
 ----- (ii)

Directional derivative = $(\nabla \phi) \cdot \hat{\mathbf{n}}$ ----- (A)

$$\nabla \phi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$$

From (i),
$$\frac{\partial \phi}{\partial x} = y + z$$
; $\frac{\partial \phi}{\partial y} = x + z$; $\frac{\partial \phi}{\partial z} = y + x$

$$\therefore (\nabla \phi)_{at(1,2,3)} = 5\vec{i} + 4\vec{j} + 3\vec{k}$$

From (ii), we have

$$\hat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{3\vec{i} + 4\vec{j} + 5\vec{k}}{\sqrt{50}}$$
 ---- (iv)

Sub (iii) and (iv) in (A), we get

Directional derivative =
$$(\nabla \phi).\hat{\mathbf{n}} = (5\vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 3\vec{\mathbf{k}}).\frac{3\vec{\mathbf{i}} + 4\vec{\mathbf{j}} + 5\vec{\mathbf{k}}}{\sqrt{50}}$$

= $\frac{15 + 16 + 15}{\sqrt{25} \times 2} = \frac{46}{5\sqrt{2}}$

5. In what direction from the point (1,-1,-2) is the directional derivative

of $\phi = x^3y^3z^3$ a maximum? What is the magnitude of this maximum?

Given,
$$\phi = x^3y^3z^3$$
 ------(i)

$$\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$
From (i), $\frac{\partial \phi}{\partial x} = 3x^2y^3z^3$; $\frac{\partial \phi}{\partial y} = 3x^3y^2z^3$; $\frac{\partial \phi}{\partial z} = 3x^3y^3z^2$

$$\therefore \nabla \phi = 3x^2y^3z^3\vec{i} + 3x^3y^2z^3\vec{j} + 3x^3y^3z^2\vec{k}$$

$$\therefore (\nabla \phi)_{at(1,2,3)} = 24\vec{i} - 24\vec{j} - 12\vec{k}$$

There fore the directional derivative is maximum in the direction $24\vec{i}-24\vec{j}-12\vec{k}$.

Magnitude of this maximum is |∇φ|

$$= \sqrt{(24)^2 + (-24)^2 + (-12)^2}$$
$$= \sqrt{1296} = 36$$

6. Find the angle between the normal to the surface $xy = z^2$ at the points (1,4,2) and (-3,-3,3).

Let
$$\phi = xy - z^2$$
 -----(i)

$$\therefore \nabla \phi = y\vec{i} + x\vec{j} - 2z\vec{k}$$

Normal to the surface is $\nabla_{1}\phi$ and $\nabla_{2}\phi$

$$\begin{split} & \therefore \nabla_1 \phi = (\nabla \phi)_{at(1,4,2)} = 4\vec{i} + \vec{j} - 4\vec{k} \\ & \nabla_2 \phi = (\nabla \phi)_{at(-3,-3,3)} = -3\vec{i} - 3\vec{j} - 6\vec{k} \\ & \therefore |\nabla_1 \phi| = \sqrt{33}; |\nabla_2 \phi| = \sqrt{54} \end{split}$$

There fore angle between the normal to the surface is,

$$\cos \theta = \frac{(\nabla_1 \phi)(\nabla_2 \phi)}{|\nabla_1 \phi| |\nabla_2 \phi|} = \frac{(4\vec{\mathbf{i}} + \vec{\mathbf{j}} - 4\vec{\mathbf{k}}) \cdot (-3\vec{\mathbf{i}} - 3\vec{\mathbf{j}} - 6\vec{\mathbf{k}})}{\sqrt{33}\sqrt{54}}$$
$$= \frac{9}{\sqrt{1782}} = \frac{9}{9\sqrt{22}} = \frac{1}{\sqrt{22}}$$
$$\therefore \quad \theta = \cos^{-1} \left[\frac{1}{\sqrt{22}} \right]$$

7. If ϕ is a scalar point function, then prove that curl (grad ϕ)=0.

$$\begin{aligned} & \textbf{grad}\,\phi = \;\vec{i}\frac{\partial\phi}{\partial x} + \vec{j}\frac{\partial\phi}{\partial y} + \vec{k}\frac{\partial\phi}{\partial z} \\ & \textbf{curl grad}\,\phi = \;\nabla\;\mathbf{X}\left[\vec{i}\frac{\partial\phi}{\partial x} + \vec{j}\frac{\partial\phi}{\partial y} + \vec{k}\frac{\partial\phi}{\partial z}\right] \end{aligned}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial x} \end{vmatrix}$$

$$= \vec{i} \left[\frac{\partial^2 \varphi}{\partial y \partial z} - \frac{\partial^2 \varphi}{\partial y \partial z} \right] - \vec{j} \left[\frac{\partial^2 \varphi}{\partial x \partial z} - \frac{\partial^2 \varphi}{\partial x \partial z} \right] + \vec{k} \left[\frac{\partial^2 \varphi}{\partial x \partial y} - \frac{\partial^2 \varphi}{\partial x \partial y} \right]$$

$$= \mathbf{0}$$

8. If \vec{A} is a constant vector, prove that div $\vec{A} = 0$.

Let
$$\vec{A} = A_1 \vec{i} + A_2 \vec{j} + A_3 \vec{k}$$

Where A_1, A_2, A_3 are constants

9. If \vec{A} is a constant vector, prove that $|\vec{A}| = 0$.

Let
$$\vec{A} = A_1 \vec{i} + A_2 \vec{j} + A_3 \vec{k}$$

Where A_1, A_2, A_3 are constants

$$\mathbf{curl} \ \vec{\mathbf{A}} = \nabla \mathbf{X} \ \vec{\mathbf{A}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 \end{vmatrix}$$

$$= \vec{\mathbf{i}} \left[\frac{\partial \mathbf{A}_3}{\partial \mathbf{y}} - \frac{\partial \mathbf{A}_2}{\partial \mathbf{z}} \right] - \vec{\mathbf{j}} \left[\frac{\partial \mathbf{A}_3}{\partial \mathbf{x}} - \frac{\partial \mathbf{A}_1}{\partial \mathbf{z}} \right] + \vec{\mathbf{k}} \left[\frac{\partial \mathbf{A}_2}{\partial \mathbf{x}} - \frac{\partial \mathbf{A}_1}{\partial \mathbf{y}} \right]$$

$$= \vec{\mathbf{i}} (0 - 0) - \vec{\mathbf{j}} (0 - 0) + \vec{\mathbf{k}} (0 - 0)$$

$$\mathbf{curl} \ \vec{\mathbf{A}} = \mathbf{0}$$

10. Determine f(r) so that the vector f(r) \vec{r} is solenoidal.

Since
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$f(r) = xf(r)\vec{i} + yf(r)\vec{j} + zf(r)\vec{k}$$

$$div [f(r)] = \frac{\partial}{\partial x}[xf(r)] + \frac{\partial}{\partial y}[yf(r)] + \frac{\partial}{\partial z}[zf(r)]$$

$$\begin{split} &= f(r) + xf'(r)\frac{\partial r}{\partial x} + yf'(r)\frac{\partial r}{\partial y} + f(r) + f(r) + zf'(r)\frac{\partial r}{\partial z} \\ &= 3f(r) + f'(r) \left[x\frac{\partial r}{\partial x} + y\frac{\partial r}{\partial y} + z\frac{\partial r}{\partial z} \right] \\ &= 3f(r) + f'(r) \left[x\frac{x}{r} + y\frac{y}{r} + z\frac{z}{r} \right] \\ &= 3f(r) + \frac{f'(r)}{r} \left[x^2 + y^2 + z^2 \right] \\ &= 3f(r) + rf'(r) \end{split}$$

Since f(r) is solenoidal, div[f(r)] = 0

ie.,
$$3f(r) + rf'(r) = 0$$

$$\frac{f'(r)}{f(r)} = \frac{-3}{r}$$

Integrating w.r.t r, we get

$$\log f(\mathbf{r}) = -3\log \mathbf{r} + \log \mathbf{c}$$

$$\log f(\mathbf{r}) = \log c \mathbf{r}^{-3}$$

$$f(\mathbf{r}) = c \mathbf{r}^{-3}$$

$$f(\mathbf{r}) = \frac{c}{r^{3}}$$

11. Find the value of 'a' so that the vector, $\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+az)\vec{k}$ is Solenoidal.

Given F is solenoidal.

$$\begin{array}{ll} \mbox{div } \vec{F} &= 0 \\ \mbox{ie.,} & \nabla \cdot \vec{F} &= 0 \\ \mbox{ie.,} & \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot \left[(x + 3y) \vec{i} + (y - 2z) \vec{j} + (x + az) \vec{k} \right] &= 0 \\ \mbox{ie.,} & \frac{\partial}{\partial x} (x + 3y) + \frac{\partial}{\partial y} (y - 2z) + \frac{\partial}{\partial z} (x + az) = 0 \Rightarrow 1 + 1 + a = 0 \Rightarrow a = -2 \end{array}$$

12. Show that the vector $2xy\vec{i}+(x^2+2yz)\vec{j}+(y^2+1)\vec{k}$ is irrotational.

Let
$$\vec{F} = 2xy\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 + 1)\vec{k}$$

A vector $\vec{\mathbf{F}}$ is said to be irrotational if $\nabla \mathbf{x} \cdot \vec{\mathbf{F}} = \mathbf{0}$

Now,
$$\nabla \mathbf{x} \vec{\mathbf{F}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ 2\mathbf{x}\mathbf{y} & (\mathbf{x}^2 + 2\mathbf{y}\mathbf{z}) & (\mathbf{y}^2 + 1) \end{vmatrix}$$

$$\vec{i} \left[\frac{\partial (y^2 + 1)}{\partial y} - \frac{\partial (x^2 + 2yz)}{\partial z} \right] - \vec{j} \left[\frac{\partial (y^2 + 1)}{\partial x} - \frac{\partial (2xy)}{\partial z} \right] + \vec{k} \left[\frac{\partial (x^2 + 2yz)}{\partial x} - \frac{\partial (2xy)}{\partial y} \right]$$

$$= \vec{i} (2y - 2y) - \vec{j} (0 - 0) + \vec{k} (2x - 2x)$$

$$\nabla \mathbf{X} \vec{\mathbf{F}} = \mathbf{0}$$

13. Show that the vector $\vec{F} = 3y^4z^2\vec{i} + 4x^3z^2\vec{j} - 3x^2y^2\vec{k}$ is solenoidal.

We know that, if \vec{F} is solenoidal, we have

$$\begin{aligned}
div \ \vec{F} &= \nabla . \vec{F} \\
&= \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) . \left[3y^4 z^2 \vec{i} + 4x^3 z^2 \vec{j} - 3x^2 y^2 \vec{k} \right] \\
&= \frac{\partial}{\partial x} (3y^4 z^2) + \frac{\partial}{\partial y} (4x^3 z^2) + \frac{\partial}{\partial z} (-3x^2 y^2) \\
&= 0 + 0 + 0
\end{aligned}$$

$$\therefore div \vec{F} = 0$$

Hence $\vec{\mathbf{F}}$ is solenoidal.

14.Define the line integral.

Let \vec{F} be a vector field in space and let AB be a curve described in the sense A to B. Divide the curve AB into n elements $d\vec{r_1}, d\vec{r_2},, d\vec{r_n}$.

Let $\vec{F_1}, \vec{F_2}, \dots, \vec{F_n}$ be the values of this vector at the junction points of the vectors $\vec{dr_1}, \vec{dr_2}, \dots, \vec{dr_n}$, then the sum

$$\lim_{n\to\infty}\sum_A^B \overrightarrow{F_n} d\overrightarrow{r_n} = \int_A^B \overrightarrow{F} d\overrightarrow{r} \qquad \text{is called the line integral.}$$

If the line integral is along the curve c then it is denoted by $\int_{c}^{\overrightarrow{F}.d\overrightarrow{r}} \ or \ \iint_{c}^{\overrightarrow{F}.d\overrightarrow{r}} \ if \ c \ is a closed curve.$

15. Evaluate $\int_{c} \vec{F} d\vec{r}$ along the curve c in xy plane, $y = x^3$ from the point (1,1) to (2,8) if $\vec{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$.

Given
$$\vec{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$$
, $y = x^3$
Now, $\vec{r} = x\vec{i} + y\vec{j}$; $d\vec{r} = dx\vec{i} + dy\vec{j}$
Here $y = x^3$; $dy = 3x^2dx$

$$\therefore \int_c \vec{F} d\vec{r} = \int_c \left[(5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j} \right] \cdot \left[dx\vec{i} + dy\vec{j} \right]$$

$$= \int_c \left[(5xy - 6x^2)dx + (2y - 4x)dy \right]$$

$$= \int_c \left[(5x(x^3) - 6x^2)dx + [(2x^3 - 4x)3x^2dx] \right]$$

$$= \int_c (5x^4 - 6x^2 + 6x^5 - 12x^3)dx$$

$$= x^5 - 2x^3 + x^6 - 3x^4$$

There fore $\int_{c}^{c} \vec{F}_{dr}$ from the point (1,1) to (2,8)

ie.,
$$\int_{1}^{2} \vec{F} d\vec{r} = \left[x^{5} - 2x^{3} + x^{6} - 3x^{4} \right]_{1}^{2} = 35$$

16. Define surface integral.

An integral which is evaluated over a surface is called a surface integral.

$$\lim_{n\to\infty}\sum_{i=1}^n\vec{F}(x_i,y_i,z_i).\hat{n}_i\Delta s_i \quad \text{is known as the surface integral.}$$

17. Find $\iint_{s} \vec{r} \cdot d\vec{s}$, where s is the surface of the tetrahedron whose

vertices are (0,0,0), (1,0,0), (0,1,0), (0,0,1).

By Gauss divergence theorem,

18. If $\vec{F} = \text{curl}\vec{A}$, prove $\iint \vec{F} \cdot \hat{n} ds = 0$, for any closed surface S.

By Gauss divergence theorem,

$$\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, ds = \iiint_{V} \nabla \cdot \overrightarrow{F} \, dV = \iiint_{V} div(\overrightarrow{F}) dv$$
$$= \iiint_{V} div(curl \overrightarrow{A}) dv = 0 \quad [\text{since div}(\text{curl } \overrightarrow{A}) = 0]$$

19. Define Volume integral.

An integral which can be evaluated over a volume closed by a surface is called a volume integral. Volume integral can be evaluated by triple integration.

ie.,
$$\iiint f(x, y, z)dv$$

20. State Gauss Divergence theorem.

If \vec{F} is a vector point function, finite and differentiable in a region r bounded by a closed surface S, then the surface integral of the normal component of \vec{F} taken over S is equal to the integral of divergence of \vec{F} taken over V.

ie., $\iint_{S} \overrightarrow{F} \cdot \hat{n} ds = \iiint_{V} \nabla \cdot \overrightarrow{F} dv$ Where \hat{n} is the unit vector in the positive normal to S.

21. Evaluate $\iint_{S} \vec{r} \cdot \hat{n} ds$, where S is a Closed surface.

By Gauss Divergence theorem, we have

$$\iint_{S} \overrightarrow{r} \cdot \overrightarrow{n} \, ds = \iiint_{V} \nabla \cdot \overrightarrow{r} \, dv$$

$$= \iiint_{V} \left[\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right] \left(x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \right) dv$$

$$= \iiint_{V} \left[\frac{\partial (x)}{\partial x} + \frac{\partial (y)}{\partial y} + \frac{\partial (z)}{\partial z} \right] dv$$

$$= \iiint_{V} (1 + 1 + 1) dv = 3 \iiint_{V} dv = 3V$$

22.. Prove that
$$\iint_{S} \phi \cdot \hat{n} \, ds = \iiint_{V} \nabla \cdot \overrightarrow{\phi} \, dV$$

By Gauss Divergence theorem , we have $\iint_{S} \vec{F} \cdot \hat{n} ds = \iiint_{V} \nabla \cdot \vec{F} dV$

Let $F = \overrightarrow{\phi} \overrightarrow{c}$ where \overrightarrow{c} is a constant vector. Then,

$$\iint_{S} \overrightarrow{\phi} \overrightarrow{c} \cdot \overrightarrow{n} ds = \iiint_{V} \nabla \cdot (\overrightarrow{\phi} \overrightarrow{c}) dv$$

$$\iint_{S} \overrightarrow{c} \cdot (\overrightarrow{\phi} \overrightarrow{n}) ds = \iiint_{V} \overrightarrow{c} \cdot (\nabla \phi) dv$$

Taking \vec{c} outside the integrals, we get

$$\overrightarrow{c} \cdot \iint_{S} \overrightarrow{\phi} \cdot \overrightarrow{n} \, ds = \overrightarrow{c} \iiint_{V} \nabla \phi dv$$

$$\iint_{S} \overrightarrow{\phi} \cdot \overrightarrow{n} \, ds = \iiint_{V} \nabla \phi dv$$

23. Evaluate $\iint_{S} x dy dz + y dz dx + z dx dy$ over the region of radius a.

$$\iint_{S} x dy dz + y dz dx + z dx dy = \iiint_{V} \left[\frac{\partial(x)}{\partial x} + \frac{\partial(y)}{\partial y} + \frac{\partial(z)}{\partial z} \right] dx dy dz$$

$$= \iiint_{V} (1 + 1 + 1) dx dy dz$$

$$= 3 \iiint_{V} dv = 3v$$

$$= 3 \left[\frac{4}{3} \pi u^{3} \right] = 4\pi u^{3}$$

24. State Green's theorem in the plane

If R is a closed region of the xy-plane bounded by a simple closed curve C and if M and N are continuous derivatives in R, then

$$\int Mdx + Ndy = \iint_{\mathcal{D}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy \text{ where C is travelled in the}$$

anti-clockwise direction.

25. Using Green's theorem, prove that the area enclosed by a simple closed curve C

is
$$\frac{1}{2}\int (xdy-ydx)dxdy$$
.

Consider By Green's theorem,

$$\int Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy \dots (1)$$

Consider
$$\frac{1}{2}\int (xdy - ydx)dxdy = \int \frac{x}{2}dy - \frac{y}{2}dx = \int -\frac{y}{2}dx + \frac{x}{2}dy$$

[since,
$$M = -\frac{y}{2}$$
;; $N = \frac{x}{2}$]

From (1),
$$\int -\frac{y}{2}dx + \frac{x}{2}dy = \iint_{R} \left[\frac{1}{2} - \left(-\frac{1}{2} \right) \right] dx dy$$

=
$$\iint_R dx dy$$
 = Area bounded by a closed curve 'C'

26. State Stoke's theorem.

If \vec{F} is any continuous differentiable vector function and S is a surface enclosed by a curve C then, $\int_{C} \vec{F} . d\vec{r} = \iint_{S} curl \vec{F} . \hat{n} ds$ where \hat{n} is the unit normal vector at any point of S.

27. Using Stoke's theorem, prove that $\int \vec{r} d\vec{r} = 0$.

Given,
$$\int_{c} \vec{r} d\vec{r}$$
 where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

$$\therefore \int_{c} \vec{r} d\vec{r} = \iint_{s} curl\vec{r} \hat{n} ds \quad [\because by Stoke's theorem]$$

$$= 0 \quad \left[\because curl\vec{r} = \nabla x\vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0 \right]$$

28. Find the constants a,b,c so that, $\vec{F} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$ is irrotational.

Given
$$\nabla x \vec{F} = 0$$

ie.,
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + 2y + az & bx - 3y - z & 4x + cy + 2z \end{vmatrix} = 0$$

$$\Rightarrow \vec{i} \left[\frac{\partial}{\partial y} (4x + cy + 2z) - \frac{\partial}{\partial z} (bx - 3y - z) \right]$$
$$-\vec{j} \left[\frac{\partial}{\partial x} (4x + cy + 2z) - \frac{\partial}{\partial z} (x + 2y + az) \right]$$
$$+\vec{k} \left[\frac{\partial}{\partial x} (bx - 3y - z) - \frac{\partial}{\partial y} (x + 2y + az) \right] = 0$$

$$\Rightarrow \vec{i}[c+1] - \vec{j}[4-a] + \vec{k}[b-2] = 0\vec{i} + 0\vec{j} + 0\vec{k}$$

$$\Rightarrow$$
 c + 1 = 0 4 - a = 0 b - 2 = 0

$$\Rightarrow$$
 c = -1; a = 4; b = 2

29. If $\vec{F} = x^2 \vec{i} + xy^2 \vec{j}$, evaluate the line integral $\int_c \vec{F} d\vec{r}$ from (0,0) to (1,1)

along the path y = x.

Given
$$\vec{F} = x^2 \vec{i} + xy^2 \vec{j}$$
, $x = y$

$$dx = dy$$

$$\vec{r} = x \vec{i} + y \vec{j}$$

$$d\vec{r} = dx \vec{i} + dy \vec{j}$$

$$\vec{F} \cdot d\vec{r} = x^2 dx + xy^2 dy = x^2 dx + x^3 dx \qquad [\because x = y, dx = dy]$$

$$= (x^2 + x^3) dx$$

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} (x^{2} + x^{3}) dx = \frac{7}{12}$$

30. What is the greatest rate of increase of $\phi = xyz^2$ at (1,0,3).

Given
$$\phi = xyz^2$$

$$\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$

$$= \vec{i}(yz^2) + \vec{j}(xz^2) + \vec{k}(2xyz)$$

$$(\nabla \phi)_{(1,0,3)} = \vec{i}(yz^2) + \vec{j}(xz^2) + \vec{k}(2xyz)$$

The greatest rate of increase = $|\nabla \phi| = \sqrt{81} = 9$ units

31. Using Green's theorem, find the area of a circle of radius r.

We know by Green's theorem,

Area =
$$\frac{1}{2}\int_{C} (xdy - ydx)$$

For a circle of radius r, we have $x^2+y^2=r^2$

Put
$$x = r\cos\theta, y = r\sin\theta$$

$$dx = -r\cos\theta d\theta$$
, $dy = r\sin\theta d\theta$ [θ varies from 0 to 2π]

Area
$$= \frac{1}{2} \int_{0}^{2\pi} [r\cos\theta r\cos\theta - r\sin\theta (-r\sin\theta)] d\theta$$
$$= \frac{1}{2} \int_{0}^{2\pi} r^{2} d\theta = \frac{1}{2} r^{2} [\theta]_{0}^{2\pi}$$

Area = πr^2 sq.units.

32. If $\nabla \phi$ is solenoidal find $\nabla^2 \phi$.

Given
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
 is solenoidal.

$$\nabla \cdot \nabla \cdot \nabla \phi = 0$$

But
$$\nabla^2 \phi = \nabla \cdot \nabla \phi = 0$$

33. If
$$\overrightarrow{r} = \left(\overrightarrow{x} + \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}\right)$$
, find $\nabla \times \overrightarrow{r}$

Given
$$\overrightarrow{r} = \left(\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{j} + \overrightarrow{z} + \overrightarrow{k}\right)$$

$$\nabla \times \overrightarrow{r} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial zx} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix} = \overrightarrow{i}(0-0) + \overrightarrow{j}(0-0) + \overrightarrow{k}(0-0) = \overrightarrow{0}$$

34. Define Volume integral.

An integral which can be evaluated over a volume closed by a surface is called a volume integral. Volume integral can be evaluated by triple integration. Ie., $\iiint f(x, y, z)dv$

35. State Gauss Divergence theorem.

If \vec{F} is a vector point function, finite and differentiable in a region r bounded by a closed surface S, then the surface integral of the normal component of \vec{F} taken over S is equal to the integral of divergence of \vec{F} taken over V.

ie., $\iint_{S} \vec{F} \cdot \hat{n} ds = \iiint_{V} \nabla \cdot \vec{F} dv$ Where \hat{n} is the unit vector in the positive normal to S.

36. Evaluate $\iint_{S} \vec{r} \cdot \hat{n} ds$, where S is a Closed surface.

By Gauss Divergence theorem, we have

$$\iint_{S} \overrightarrow{r} \cdot \overrightarrow{n} \, ds = \iiint_{V} \nabla \cdot \overrightarrow{r} \, dv$$

$$= \iiint_{V} \left[\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right] \left(x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \right) dv$$

$$= \iiint_{V} \left[\frac{\partial (x)}{\partial x} + \frac{\partial (y)}{\partial y} + \frac{\partial (z)}{\partial z} \right] dv$$

$$= \iiint_{V} (1 + 1 + 1) dv = 3 \iiint_{V} dv = 3V$$

37. Prove that $\iint_S \phi . \hat{n} ds = \iiint_V \nabla . \vec{\phi} dV$ By Gauss Divergence theorem, we have $\iint_S \vec{F} . \hat{n} ds = \iiint_V \nabla . \vec{F} dV$

Let $\vec{F} = \vec{\phi} \vec{c}$ where \vec{c} is a constant vector. Then,

$$\iint_{S} \overrightarrow{\phi} \overrightarrow{c} \cdot \overrightarrow{n} ds = \iiint_{V} \nabla \cdot (\overrightarrow{\phi} \overrightarrow{c}) dv$$
$$\iint_{S} \overrightarrow{c} \cdot (\overrightarrow{\phi} \overrightarrow{n}) ds = \iiint_{V} \overrightarrow{c} \cdot (\nabla \phi) dv$$

Taking \vec{c} outside the integrals, we get

$$\overrightarrow{c} \cdot \iint_{S} \overrightarrow{\phi} \cdot \overrightarrow{n} \, ds = \overrightarrow{c} \iiint_{V} \nabla \phi dv$$

$$\iint_{S} \overrightarrow{\phi} \cdot \overrightarrow{n} \, ds = \iiint_{V} \nabla \phi dv$$

38. Evaluate $\iint_{S} x dy dz + y dz dx + z dx dy$ over the region of radius a.

$$\iint_{S} x dy dz + y dz dx + z dx dy = \iiint_{V} \left[\frac{\partial(x)}{\partial x} + \frac{\partial(y)}{\partial y} + \frac{\partial(z)}{\partial z} \right] dx dy dz$$

$$= \iiint_{V} (1 + 1 + 1) dx dy dz$$

$$= 3 \iiint_{V} dv = 3v$$

$$= 3 \left[\frac{4}{3} \pi a^{3} \right] = 4\pi a^{3}$$

39. State Green's theorem in the plane

If R is a closed region of the xy-plane bounded by a simple closed curve C and if M and N are continuous derivatives in R, then

$$\int Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy \text{ where C is travelled in the anti-}$$

clockwise direction.

40. Using Green's theorem , prove that the area enclosed by a simple closed curve \boldsymbol{C}

is
$$\frac{1}{2}\int (xdy-ydx)dxdy$$
.

consider By Green's theorem,

$$\int Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy \dots (1)$$
Consider $\frac{1}{2} \int (xdy - ydx) dxdy = \int \frac{x}{2} dy - \frac{y}{2} dx = \int -\frac{y}{2} dx + \frac{x}{2} dy$
[since, $M = -\frac{y}{2}$;; $N = \frac{x}{2}$]
From (1),
$$\int -\frac{y}{2} dx + \frac{x}{2} dy = \iint_{R} \left[\frac{1}{2} - \left(-\frac{1}{2} \right) \right] dxdy$$

=
$$\iint_R dxdy$$
 = Area bounded by a closed curve 'C'

41. State Stoke's theorem.

If \vec{F} is any continuous differentiable vector function and S is a surface enclosed by a curve C then, $\int_{C}^{\vec{F}} d\vec{r} = \iint_{S} curl \vec{F} \cdot \hat{n} ds$ where \hat{n} is the unit normal vector at any point of S.

42. If
$$\vec{F} = (y^2 \cos x + z^2) \vec{i} + (2y \sin x - 4) \vec{j} + 3xz^2 \vec{k}$$
, find its scalar potential.

To find ϕ such that $\overrightarrow{F} = grad\phi$

$$(y^{2}\cos x + z^{2})\overrightarrow{i} + (2y\sin x - 4)\overrightarrow{j} + 3xz^{2}\overrightarrow{k} = \overrightarrow{i}\frac{\partial\phi}{\partial x} + \overrightarrow{j}\frac{\partial\phi}{\partial y} + \overrightarrow{k}\frac{\partial\phi}{\partial z}$$

Integrating the equations partially w.r.to x,y,z respectively.

$$\phi = y^{2} \sin x + xz^{3} + f_{1}(y,z)$$

$$\phi = y^{2} \sin x - 4y + f_{2}(x,z)$$

$$\phi = xz^{3} + f_{3}(y,z)$$

Therefore $\phi = y^2 \sin x + xz^3 - 4y + c$ is a scalar potential.