

SNSCOLLEGEOFTECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE – 35

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE

Definition:
A position differential equation is an equation,
involving a function of 2 or more variable and sum
of Its partial doubvalues.
Notations:
$P = \frac{\partial Z}{\partial x}$, $q = \frac{\partial Z}{\partial y}$, $r = \frac{\partial^2 Z}{\partial x^2}$, $s = \frac{\partial^2 Z}{\partial x \partial y}$, $t = \frac{\partial^2 Z}{\partial y^2}$
1+ (d-1)+(b-n) ±
Formation of Partial differential Equations:
1) Elimineating Azbitsary constants
iii Eliminating Assoiltary function
Eliminating Ashitrary constant!
Type 1: Number of Azbitiany constant & Number of Azbitiany constant & Number of Azbitiany constant & order partial
Independent variable, then we go
dillegentral equation.
1. Form the Pole by eliminating Albabay constitution
form z= anthy+ a2+ab+b2.
Dy prosit executed prite in A.C. IV
$\frac{\partial z}{\partial x} = a$ $\frac{a_1b}{2} = \frac{\alpha_1y}{2}$
[P=a] No q N = 2

SNSCOLLEGEOFTECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE – 35

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE

Diff Pwst y.
$$\frac{\partial^2}{\partial y} = b \Rightarrow \boxed{9=b}.$$

$$Z = ax + by + a^2 + ab + b^2$$

$$= px + qy + p^2 + pq + q^2$$

2. Form the P.d.e by E.A.C from
$$Z = (x-a)^2 + (y-b)^2 + 1$$

$$P = \lambda(x-a) \Rightarrow \frac{P}{2} = (x-a)$$

$$\frac{\partial^2}{\partial y} = 8(y-b)(1)$$

$$\frac{9}{3} = y-b$$

Four the P.d.C by eliminating Astrituary Constant from

$$\frac{1}{(\alpha Z-1)} \frac{\partial}{\partial x} (\alpha Z-1) = 1$$

SNSCOLLEGEOFTECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE – 35

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE

$$\frac{1}{az-1} = \frac{3z}{2x}$$

$$\frac{ap}{az-1} = 1 \rightarrow 0.$$

$$\frac{1}{(az-1)} \stackrel{\circ}{\partial y} (az-1) = 0.$$

$$\frac{1}{(az-1)} = \frac{3z}{2y} = 0.$$

$$\frac{1}{(az-1)} = \frac{3z}{2y} = 0.$$

$$\frac{1}{(az-1)} = \frac{3z}{2y} = 0.$$

$$\frac{1}{(az-1)} = \frac{2}{0}$$

$$\frac{1}{(az-1)}$$