

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE – 35

UNIT 3 PARTIAL DIFFERENTIALEQUATIONS

Solutions of standard types of first order partial differential equations

Type-ii
$$f(z_1p_1q)=0$$
.
1. Solve: $p(1+q)=qz\rightarrow0$
Let $u=x+ay$
Huen $p=dz$ and $q=adz$
 $0\rightarrow dz$ $(1+adz)=adz$
 $1+adz=az$
 $1+adz=az$
 $adz=az-1$
 $dz=az-1$
 $du=az-1$
 $du=az-1$

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE – 35

UNIT 3 PARTIAL DIFFERENTIALEQUATIONS

Solutions of standard types of first order partial differential equations

Integrating,
$$\int du = \int \frac{a}{az-1} dz$$
 $u = log(az-1) + log C$
 $x + ay = log (c(az-1))$

2) Solve $I = I + p^2 + q^2$

Solve $I = I + p^2 + q^2 \rightarrow 0$

Let $u = x + ay \quad p = dz \quad q = adz$
 $0 \Rightarrow z^2 = I + \left(\frac{dz}{du}\right)^2 + \left(a \frac{dz}{du}\right)^2$
 $z^2 = I + \left(\frac{dz}{du}\right)^2 (I + a^2)$
 $z^2 - I = \left(\frac{dz}{du}\right)^2 (I + a^2)$

Integering on both sides

 $z - I = \frac{I}{I + a^2} (I + a^2)$
 $z - I = \frac{I}{I + a^2} (I + a^2)$

For this type, there $z_0 = z_0$
 $z_0 - z_0 = z_0$

Given: $z_0 - z_0 = z_0 - z_0$

Given: $z_0 - z_0 = z_0 - z_0$
 $z_0 - z_0 = z_0$
 z_0