

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Solutions of standard types of first order partial differential equations

Type-IV f(x)B = +2(y/9)too this type, those as no singular Integral. 1- Solve $q^2 - p = y - x$ Given: $q^2 - p = y - x = cook$ (constant) Now, $q^2 - y = p - x = k$ Now, $q^2 - y = K$ $q^2 = K + y$ $q^2 = K + y$ $q^2 = K + y$

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Solutions of standard types of first order partial differential equations

Pokt,
$$x = \int \beta dx + \int q dy$$
 $x = \int (k + x) dx + \int (k + y) dx$
 $= Kx + x^2 + (k + y)^{3/2} + C$, which is the

Complete Integral

a. Solve: $TP + Tq = x + y$
 $TP - x = K$
 $TP - x =$

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Solutions of standard types of first order partial differential equations

boxt,
$$T = \int p dx + \int q dy$$

$$= \int \left(\frac{K}{x} - x\right) dx + \int \left(\frac{K}{y} - y\right) dy$$

$$= K \log x - \frac{x^2}{2} + K \log y - \frac{y^2}{2} + C$$

$$Z = K \log (xy) - \left(\frac{x^2 + y^2}{2}\right) + C, \text{ which is the complete}$$
Integral.

Types2:

8) Solve!
$$z = px + qy + \sqrt{1+p^2+q^2}$$

Given: $z = px + qy + \sqrt{1+p^2+q^2}$

Surgular (ntegea).

$$\frac{\partial Z}{\partial b} = 0$$
 $2 + \frac{1(2a)}{2\sqrt{1+a^2+b^2}} = 0$
 $2 = \frac{a}{\sqrt{1+a^2+b^2}} \rightarrow 0$
 $y = \frac{b}{\sqrt{1+a^2+b^2}} \rightarrow 0$
 $y = \frac{b}{\sqrt{1+a^2+b^2}} \rightarrow 0$

Squaring on both sides,
$$x^{2} = \frac{a^{2}}{1+a^{2}+b^{2}}, \quad y^{2} = \frac{b^{2}}{1+a^{2}+b^{2}}$$

Now,
$$\chi^2 + y^2 = \frac{a^2 + b^2}{1 + a^2 + b^2}$$

$$1 - (x^2 + y^2) = 1 - \frac{a^2 + b^2}{1 + a^2 + b^2}$$

$$1 - x^2 - y^2 = 1 + a^2 + b^2 - a^2 + b^2$$

$$1 - x^2 - y^2 = \frac{1}{1 + a^2 + b^2}$$

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Solutions of standard types of first order partial differential equations

Taking square noot,
$$\frac{1}{1-x^2-y^2} = \frac{1}{1+\alpha^2+b^2}$$

$$\Rightarrow \frac{1}{1+\alpha^2+b^2} = \frac{1}{1-x^2-y^2}$$
(1)
$$\Rightarrow x = -\alpha \cdot 1 - x^2 - y^2 \Rightarrow \alpha = \frac{\alpha x}{1-x^2-y^2}$$
(2)
$$\Rightarrow y = -b \cdot 1 - x^2 - y^2 \Rightarrow b = \frac{-y}{1-x^2-y^2}$$
(A)
$$\Rightarrow z = \frac{-x^2}{1-x^2-y^2} - \frac{y^2}{1-x^2-y^2} + \frac{1}{1-x^2-y^2}$$

$$= \frac{1-x^2-y^2}{1-x^2-y^2}$$

$$z = 1-x^2-y^2$$

$$= \frac{1-x^2-y^2}{1-x^2-y^2}$$

$$= \frac{1-x^2-y^2}{1-x^2-y^2}$$