

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Colombia (B.E - CSE, EEE, ECE, Mech & Colombia (B.E - CSE), TAMIL NADU

DEPARTMENT OF MATHEMATICS

CourseCode:	23MAT103
CourseName:	DIFFERENTIAL EQUATIONS AND TRANSFORMS
Year/Sem:	I/II

QUESTION BANK UNIT-V

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS UNIT - V

Unit - V / Part - A / 2 Marks					
S.No	Questions	Mark Splitup	K - Level	co	
1.	Define Laplace Transform of $f(t)$.	2	K1	CO5	
2.	Change of scale of Laplace Transform. (or) If $L[f(t)] = F(s)$, then $L[f(at)] = \frac{1}{a} F(\frac{s}{a})$, $a > 0$.	2	K1	CO5	
3.	State and prove First Shifting property.	2	K1	CO5	
4.	Find L[t sin at]	2	K1	CO5	
5.	Find $L[t^2e^{-3t}]$	2	K1	CO5	
6.	L[sin ² 2t]	2	K1	CO5	
7.	Find L[sin 5t cos 2t]	2	K1	CO5	
8.	Find $L\left[\frac{\sin at}{t}\right]$. Hence, show that $\int_0^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$	2	K1	CO5	
9.	Find $L[ts^{-t} \sin t]$	2	K1	CO5	
10.	Find L[t sin 3t cos 2t]	2	K1	CO5	
11.	Find the inverse Laplace Transforms of $\frac{s-3}{s^2+4s+13}$	2	K1	CO5	
12.	State Initial and Final value theorems.	2	K1	CO5	
13.	Find the Laplace Transform of Unit step function.	2	K1	CO5	
14.	Verify the Initial value theorem for the function $f(t) = as^{-bt}$.	2	K1	CO5	
15.	State Convolution Theorem in Laplace Transform.	2	K1	CO5	

Unit - V / Part - B / 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	00
1.	Find $L\left[\frac{\cos at - \cos bt}{t}\right]$	8	К2	C05
2.	Find $L\left[\frac{1-e^{L}}{t}\right]$	8	К2	C05
3.	Verify the initial and final value theorem for the function $f(t) = 1 + e^{-t} (sint + cost)$.	4	К2	C05
4.	Verify the initial and final value theorem for the function $f(t) = 3e^{-2t}$.	4	К2	C05
5.	Find the Laplace transform of the periodic function $f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t, & a < t \le 2a \end{cases} \text{ and } f(t + 2a) = f(t).$	80	К2	C05
6.	Find the Laplace transform of the periodic function $f(t) = \begin{cases} t & 0 \le t \le 1 \\ 2-t, & 1 < t \le 2 \end{cases} \text{ and } f(t+2) = f(t).$	8	K2	C05

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Damp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & D. Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

7.	Find the Laplace transform of the square wave given by $f(t) = \begin{cases} E, & 0 < t < \frac{\tau}{2} \\ -E, & \frac{\tau}{2} \le t \le T \end{cases} \text{ and } f(t+T) = f(t).$	8	K2	C05
8.	Find the Laplace transform of the square wave given by $f(t) = \begin{cases} 1, & 0 < t < \frac{a}{2} \\ -1, & \frac{a}{2} \le t \le a \end{cases} \text{ and } f(t+a) = f(t).$	œ	K2	C05
9.	Find the Laplace transform of the half wave rectifier $f(t) = \begin{cases} \sin \omega t, & 0 < t \le \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} \text{ and } f\left(t + \frac{2\pi}{\omega}\right) = f(t).$	8	K2	C05
10.	Using convolution theorem find $L^{-1}\left[\frac{a^2}{(a^2+a^2)(a^2+b^2)}\right]$	8	K2	C05
11.	Using convolution theorem find $L^{-1}\left[\frac{x^2}{(x^2+4)(x^2+9)}\right]$	8	K2	C05
12.	Using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$	8	K2	C05
13.	Using convolution theorem find $L^{-1}\left[\frac{1}{(x+1)(x^2+1)}\right]$	8	K2	C05
14.	Using convolution theorem find $L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$	8	K2	C05
15.	Using convolution theorem find $L^{-1}\left[\frac{1}{(x^2+a^2)^2}\right]$	8	K2	C05
16.	Solve the difference equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{-t}$ with $y(0) = 1$ and $y(0) = 0$, using Laplace transform.	8	К2	C05
17.	Using Laplace transform, solve $\frac{d^2y}{dt^2} + 9y = \cos 2t$ given $y(0) = 1$, $y(\frac{\pi}{2}) = -1$.	8	K2	C05
18.	Solve $y'' + 5y' + 6y = 2$, $y(0) = 0$, $y'(0) = 0$ using Laplace transform.	8	K2	C05
19.	Using Laplace transforms, solve $y'' + y' = t^2 + 2t$, $y(0) = 4$, $y'(0) = -2$.	8	K2	C05
20.	Using Laplace transform, solve $(D^2 - 3D + 2)y = e^{-3t}$ given $y(0) = 1$ and $y'(0) = -1$	8	K2	C05
21.	Solve $\frac{d^3x}{dt^2} - 3\frac{dx}{dt} + 2x = 2$, given $x = 0$ and $\frac{dx}{dt} = 5$ for $t = 0$, using Laplace transform method.	8	K2	C05
	using Laplace transform method.			