

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna Úniversity, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Colombia (B.E - CSE, EEE, ECE, Mech & Colombia (B.E - CSE), TAMIL NADU

DEPARTMENT OF MATHEMATICS

CourseCode:	23MAT102
CourseName:	COMPLEX ANALYSIS AND LAPLACE TRANSFORMS
Year/Sem:	I/II

QUESTION BANK UNIT-I VECTOR CALCULUS

	Unit-I /Part-A/2Marks			
S.No	Questions	Mark Splitup	K – Level	СО
1.	Find $\nabla(r^n)$.	2	K2	CO1
2.	Find $\nabla(logr)$.	2	K2	CO1
3.	Find $grad\phi$ if $\phi=3x^2y-y^3z^2$ at the point $(1,-2,-1)$.	2	K2	CO1
4.	Find the unit normal to the surface $x^2+y^2-z^2=1$ at (1,1,1).	2	K2	C01
5.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the Point $(1, -2, -1)$ in the direction of $2 \vec{\iota} - \vec{j} - 2\vec{k}$.	2	K2	CO1
6.	Prove that $divr = 3$ and $curlr = 0$.	2	K1	CO1
7.	Show that $F \rightarrow = (x+2y)i \rightarrow + (y+3z)j \rightarrow + (x^2-2z)k \rightarrow \hat{s}$ solenoidal.	2	K1	CO1
8.	Find a such that $F^{**}=(3x-2y+z)i^{*}+(4x+ay-z)j$	2	K2	CO1
9.	Prove that $F^{**}=yz\iota^{*}+zx\jmath^{*}+xyk^{**}$ is irrotational.	2	K2	CO1
10.	Find the values of a,b,c so that the vector $F \rightarrow (x+y+az)i \rightarrow (bx+2y-z)j \rightarrow (-x+cy+2z)k \rightarrow i$ irrotational.	2	K2	CO1
11.	Find the values of a,b,c so that the vector $F \rightarrow (x+2y+az)i \rightarrow (bx-3y-z)j \rightarrow (4x+cy+2z)k$ is irrotational.	2	K2	CO1
12.	If \overrightarrow{A} and \overrightarrow{B} are irrotational, then prove that $\overrightarrow{A} \times \overrightarrow{B}$ is solenoidal	2	K2	CO1
13.	Prove that $\operatorname{curl}(\operatorname{grad}\phi)=0^{\leftrightarrow}$.	2	K2	CO1
14.	If $F \rightarrow = x^3 i \rightarrow + y^3 j \rightarrow + z^3 k \rightarrow$, then find $div(curl F \rightarrow)$.	2	K1	CO1
15.	State Green's theorem.	2	K1	CO1
16.	Find area of a circle of radius a using Green's theorem	2	K2	CO1
17	State Gauss divergence theorem.	2	K1	CO1
18	State Stoke'stheorem.	2	K1	CO1

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna Úniversity, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Colombia (B.E - CSE, EEE, ECE, Mech & Colombia (B.E - CSE), TAMIL NADU

DEPARTMENT OF MATHEMATICS

Unit - I / Part - B/ 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	co
1.	Find the angle between the surfaces $x \log z = y^2 - 1$ and $x^2y = 2 - z$ at the point $(1, 1, 1)$.	8	К2	C01
2.	Find a and b so that the surfaces $ax^3 - by^2z - (a+3)x^2 = 0$ And $4x^2y - z^3 - 11 = 0$ cut orthogonally at the point $(2, -1, -3)$.	8	K2	CO1
3.	Find a and b so that the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at the point $(1, -1, 2)$.	8	K2	CO1
4.	Show that $\vec{F} = (6xy + z^3)\vec{\imath} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational vector and find the scalar potential ϕ such that $\vec{F} = \nabla \phi$	8	K2	CO1
5.	Prove that $\vec{F} = (y^2 \cos x + z^3)\vec{i} + (2y \sin x - 4)\vec{j} + 3xz^2\vec{k}$ is irrotational and find its scalar potential.	8	K2	CO1
6.	If \overrightarrow{r} is the position vector of the point (x, y, z) , Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$. Hence find the value of $\nabla^2 \left(\frac{1}{r}\right)$.	8	К2	C01
7.	If $\overrightarrow{A} = (3x^2 + 6y)\overrightarrow{\imath} + 14yz\overrightarrow{\jmath} + 20xz^2\overrightarrow{k}$, evaluate $\int_C \overrightarrow{A} \cdot d\overrightarrow{r}$ (0, 0, 0) to (1, 1, 1) over the curve $x = t$, $y = t^2$, $z = t^3$ and \overrightarrow{r} is the position vector.	8	КЗ	CO1
8.	Find the work done by the force $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ which moves a particle in xy plane from $(0, 0)$ to $(1, 1)$ along the parabola $y^2 = x$.	8	КЗ	CO1
9.	Verify Green's theorem for $\int_{C} [(xy + y^{2}) dx + x^{2} dy]$ where C is the boundary of the common area between $y = x^{2}$ and $y = x$.	16	КЗ	CO1
10.	Verify Green's theorem in a plane for $\int_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy], \text{ where } C \text{ is the boundary of the region defined by } x = y^2, y = x^2.$	16	КЗ	CO1
11.	Verify Green's theorem in a plane for $\int_{\mathcal{C}} [3x - 8y^2) dx + (4y - 6xy) dy], \text{ where } \mathcal{C} \text{ is the boundary of the region defined by the lines } x = 0, y = 0 \text{ and } x + y = 1.$	16	КЗ	CO1
12.	Verify Gauss Divergence theorem for $\overrightarrow{F} = 4xz \ \overrightarrow{t} - y^2 \ \overrightarrow{j} + yz \ \overrightarrow{k}$ over the cube bounded by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	16	КЗ	CO1
13.	Verify Gauss Divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the rectangular parallelopiped bounded by $x = 0$, $y = 0$, $z = 0$ and $x = a$, $y = b$, $z = c$.	16	К3	CO1

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna Úniversity, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Colombia (B.E - CSE, EEE, ECE, Mech & Colombia (B.E - CSE), TAMIL NADU

DEPARTMENT OF MATHEMATICS

14.	Verify Gauss Divergence theorem for the vector function $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}$ over the cube bounded by $x = 0$, $y = 0$, $z = 0$ and $x = a$, $y = a$, $z = a$.	16	К3	C01
15.	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.	16	К3	C01
16.	Verify Stoke's theorem for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz\vec{k}$ over the cube bounded by $x = 0$, $y = 0$, $z = 0$ and $x = 1$, $y = 1$, $z = 1$.	16	К3	C01
17.	Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = b$.	16	К3	C01

UNIT - II

	Unit - II / Part - A / 2 Marks			
S.No	Questions	Mark Splitup	K - Level	60
1.	Solve $(D^2 + 5D + 4) = 0$.	2	K2	CO2
2.	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 2y = 0.$	2	K2	C02
3.	Solve $\frac{d^4y}{dx^4} = 16y$.	2	К2	C02
4.	Solve $(D^4 - 2D^3 + D^2)y = 0$.	2	K2	C02
5.	Solve $(D^4 - 2D^2 + 1)y = 0$.	2	K2	C02
6.	Solve $y''' + 2y'' + y' = 0$.	2	K2	C02
7.	Solve $(D^3 + 1)y = 0$	2	K2	C02
8.	Solve $(D^2+1)y=e^{-x}$.	2	K2	C02
9.	Find the particular integral of $(D^2-4)y-e^{2x}$.	2	K2	C02
10.	Find the particular integral of $(D^3 + 8)y - e^{-2x}$	2	K2	CO2
11.	Find the particular integral of $(D^2 - a^2)y = e^{ax}$.	2	K2	C02
12.	Find the particular integral of $(D-m)^2 y = e^{mx}$	2	K2	C02
13.	Find the complementary function of $(D^2 + 4)^2 = \cos x$	2	K2	CO2
14.	Find the particular integral of $(D^4 + D^2)y = \sin x$	2	K2	C02
15.	Find the particular integral of $(D-1)^2$ = $\sinh 2x$	2	K2	C02
16.	Find the particular integral of $(D-1)^2 y = \cosh 2x$	2	K2	C02
17.	Find the particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$.	2	К2	C02