

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

14.	Verify Gauss Divergence theorem for the vector function $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}$ over the cube bounded by $x = 0, y = 0, z = 0$ and $x = a, y = a, z = a$.	16	K3	CO1
15.	Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.	16	K3	CO 1
16.	Verify Stoke's theorem for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz \vec{k}$ over the cube bounded by $x = 0, y = 0, z = 0$ and $x = 1, y = 1, z = 1$.	16	K3	C01
17.	Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = 0$, $x = a$, $y = 0$, y = b.	16	K3	C01

UNIT - II

Unit - II / Part - A / 2 Marks				
S.No	Questions	Mark Splitup	K - Level	8
1.	Solve $(D^2 + 5D + 4) = 0$.	2	K2	C02
2.	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 2y = 0.$	2	K2	CO2
3.	Solve $\frac{d^4y}{dx^4} = 16y$.	2	К2	C02
4.	Solve $(D^4 - 2D^3 + D^2)y = 0$.	2	K2	C02
5.	Solve $(D^4 - 2D^2 + 1)y = 0$.	2	K2	C02
6.	Solve $y''' + 2y'' + y' = 0$.	2	K2	C02
7.	Solve $(D^3 + 1)y = 0$	2	K2	C02
8.	Solve $(D^2 + 1)y = e^{-x}$.	2	K2	C02
9.	Find the particular integral of $(D^2 - 4)y - e^{2x}$.	2	K2	C02
10.	Find the particular integral of $(D^3 + 8)y - e^{-2x}$	2	K2	C02
11.	Find the particular integral of $(D^2 - a^2)y - e^{ax}$.	2	K2	C02
12.	Find the particular integral of $(D-m)^2 y - e^{mx}$	2	K2	C02
13.	Find the complementary function of $(D^2 + 4)^2 = \cos x$	2	K2	C02
14.	Find the particular integral of $(D^4 + D^2)y = \sin x$	2	K2	C02
15.	Find the particular integral of $(D-1)^2 = \sinh 2x$	2	K2	C02
16.	Find the particular integral of $(D-1)^2 y - \cosh 2x$	2	K2	C02
17.	Find the particular integral of $\frac{d^2y}{dx^2} + 4y - \sin 2x$.	2	K2	CO2

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

18.	Find the particular integral of $(D^4 + D^2)y = \sin x$	2	K2	CO2
19	Find the particular integral of $(D^2 + 2)y - x^2$.	2	K2	CO2
20.	Find the particular integral of $(D+1)^2 y = e^{-x} \cos x$.	2	K2	CO2
21.	Find the particular integral of $(D^2 - 2D + 5)y - e^x \sin 2x$	2	K2	CO2
22.	Find the particular integral of $(D^2 - 2D + 5)y - e^x \sin 2x$	2	K2	CO2
23.	Reduce the equation $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$ to homogeneous differential equation with constant coefficients.	2	K2	CO 2
24.	$Solve(x^2D^2 + xD)y = 0.$	2	K2	CO2
25.	Solve $x^2y'' - 2xy' + 2y = 0$.	2	K2	CO2
26.	Transform $(x+2)^2 \frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + y = 3x + y$ in to differential equation with constant coefficients.	2	K2	CO2
27.	Eliminate x and find the equation in y from $\frac{dx}{dt} + 5x - 2y = t$; $\frac{dy}{dt} + 2x + y + = 0$.	2	K2	CO 2

	Unit - II / Part - B / 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	co	
1.	Solve $(D^2 + 4D + 3)y = e^{-x} \sin x + xe^{3x}$.	8	K2	CO2	
2.	Solve $(4D^2 - 4D + 1)y = 4$.	8	K2	CO2	
3.	Solve $(D^2 - 4D + 13)y = e^{2x} \sin 3x$.	8	К2	CO2	
4.	Solve $(D^2 + 5D + 4)y = 4e^{-x} + x$.	8	K2	CO2	
5.	Solve $(D^2 + 4)y = x^2 \cos 2x$.	8	K2	CO2	
6.	Solve $(D^2 + 16)y = \cos^3 x$.	8	K2	CO2	
7.	Solve $y^{11} - 2y^1 + y - xe^x \sin x$.	8	K2	CO2	
8.	Solve $(D^2 + 4D + 5)y = e^x + x^3 + \cos 2x + 1$	8	K2	CO2	
9.	Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.	8	K2	CO2	
10.	Solve $(D^2 + 4)y = \sec 2x$ by the method of variation of parameters.	8	K2	CO2	
11.	Solve $(D^2 - 4D + 4)y = e^{2x}$ by the method of variation of parameters.	8	K2	CO2	
12.	Solve $y^{11} + 9y - \cot 3x$. by the method of variation of parameters.	8	K 2	CO2	

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

r				
13.	Solve $(D^2 + 1)y = x \sin x$ by the method of variation of parameters.	8	K2	CO2
14.	Solve $(D^2 + 1)y = cosecx$ by the method of variation of parameters.	8	K2	CO2
15.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y - x^2 + \cos(\log x)$.	8	K3	C02
16.	Solve $(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$.	8	K3	C02
17.	Solve $(x^2D^2 - 3xD + 5)y = x^2 \sin(\log x)$.	8	K3	CO2
18.	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$	8	K3	C02
19.	Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y - 3x^2 + 4x + 1.$	8	К3	C02
20.	Solve $((1 + x)^2 D^2 + (1 + x)D + 1)y = 4 \cos[\log(1 + x)]$	8	K3	CO2
21.	Solve $((1+x)^2D^2 + (1+x)D + 1)y = 2 \sin \log(1+x)$.	8	K3	CO2
22.	Solve $(x+2)^2 \frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + y = 3x + 4.$	8	K3	C02
23.	Solve the simultaneous equations $\frac{dx}{dt} + 2x - 3y = 5t; \frac{dy}{dt} - 3x + 2y = 0 \text{ given that } x(0) = 0 \& y(0) = -1.$	8	K3	C02
24.	Solve the simultaneous equations $\frac{dx}{dt} + 2y + sint = 0$; $\frac{dy}{dt} - 2x - cost = 0$ given that $x = 0$ and $y = 1$ at $t = 0$.	8	K3	CO2
25.	Solve the simultaneous equations $\frac{dx}{dt} + 2y = 5e^t$; $\frac{dy}{dt} - 2x = 5e^t$ given that $x = -1$ and $y = 3$ at $t = 0$.	8	K3	C02
26.	Solve the following simultaneous differential equations $\frac{dx}{dt} + 2y = \sin 2t ; \frac{dy}{dt} - 2x = \cos 2t.$	8	K3	C02
27.	Solve the following simultaneous differential equations $Dx + y = \sin 2t$; $-x + Dy = \cos 2t$.	8	K3	CO2
28.	Solve the following simultaneous differential equations $\frac{dx}{dt} - \frac{dy}{dt} + 2y = cos2t, \frac{dx}{dt} + \frac{dy}{dt} - 2x = sin2t$	8	K3	CO2