

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT - III

	Unit - II / Part - A / 2 Marks			
S.No	Questions	Mark Splitup	K - Level	co
1.	Define analytic function of a complex variable.	2	K2	CO3
2.	Write the necessary condition for $f(z)$ to be analytic	2	K2	CO3
3.	Check whether $w = \sigma$ is analytic everywhere.	2	K2	CO3
4.	Test the analyticity of the function $w = \sin z$.	2	K2	CO3
5.	Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not.	2	K1	CO3
6.	For what values of a, b and c the function. f(z) = x + ay - i (bx + cy) is analytic.	2	K3	CO3
7.	Verify the function $u = log \sqrt{x^2 + y^2}$ is harmonic or not?	2	K3	CO3
8.	Show that $u = 2x (1 - y)$ is harmonic. Find the value of m if $u = 2x^2 - my^2 + 3x$ is harmonic.	2	K1	CO3
9.	Find the value of m if $u = 2x^2 - my^2 + 3x$ is harmonic.	2	K1	CO3
10.	Prove that an analytic function whose real part is constant must itself be a constant.	2	K1	CO3
11.	Prove that an analytic function with constant imaginary part is constant.	2	K1	CO3
12.	Construct the analytic function $f(z)$ for which the real part is $e^{z} cosy$.	2	K1	CO3
13.	Define conformal mapping.	2	K1	CO3
14.	Find the image of the circle $ z = 3$ under the transformation $w = 2z$.	2	K1	C03
15.	Find the critical points of the transformation $w^2 = (z - \alpha)(z - \beta).$	2	K1	CO3
16.	Find the invariant points of the bilinear transformation $w = \frac{1+x}{1-x}$.	2	K1	C03
17.	Find the fixed points of the transformation $w = \frac{6x-9}{x}$.	2	К2	CO3
18.	Define bilinear transformation.	2	K2	CO3

Unit - III / Part - B / 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	CO
1.	Prove that the real and imaginary parts of an analytic function are harmonic functions.	8	K2	CO3
2.	Show that an analytical function with constant modulus is constant.	8	K2	CO3
3.	If $w = u(x, y) + i v(x, y)$ is an analytic function the curves of the family $u(x, y) = a$ and the curves of the family $v(x, y) = b$ cut orthogonally, where a and b are varying constants.	8	K2	C03

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

4.	If $f(z)$ is a regular function of z , then prove that $\nabla^2 f(z) ^2 = 4 f'(z) ^2$.	8	K2	CO3
5.	If $f(z)$ is an analytic (regular) function of z, then prove that	8	K2	C03
	$\nabla^2 \log f(z) = 0.$ Determine the analytic function where real part is			
6.	$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1.$	8	K2	CO3
7.	Find an analytic function $u = e^{x}(x \cos y - y \sin y)$ also find conjugate harmonic function	8	K2	CO3
8.	Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic and determine its conjugate. Also find $f(z)$.	8	K2	CO3
9.	Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$.	8	K2	CO3
10.	Find the analytic function $f(z) = u + iv$ given that $2u + 3v = e^{x}(cosy - siny).$	8	K2	C03
11.	Show that $v = e^{-x}(x \cos y + y \sin y)$ is harmonic function. Hence find the analytic function $f(z)$.	8	K2	CO3
12.	Find the analytic function $f(z) = u + iv$ given that $u - v = e^{z}(cosy - siny).$	8	K2	CO3
13	Find the analytic function $f(z) = u + iv$, if $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	8	K2	CO 3
14.	Find the image of the circle $ z - 2i = 2$ under the transformation $w = \frac{1}{r}$.	8	K3	CO3
15.	Find the image of the circle $ z - 1 = 1$ under the transformation $w = \frac{1}{x}$.	8	K3	CO3
16.	Find the image of the infinite strips (i) $\frac{1}{4} < y < \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{2}$.	8	K3	CO3
17.	Find the image of the half plane $x > c$, when $c > 0$ under the transformation $w = \frac{1}{c}$. Show the regions graphically.	8	K3	C03
18.	Find the image of infinite strip $1 < x < 2$ under the transformation $w = \frac{1}{x}$.	8	K3	CO3
19.	Find the bilinear transformation that maps the points $z = 0, -1, i$ into the points $w = i, 0, \infty$ respectively.	8	K3	CO3
20.	Find the bilinear transformation that maps the points $z = -2, 0, 2$ into the points $w = 0, i, -i$ respectively	8	K3	CO3
21.	Find the bilinear mapping which maps points $z = 0, 1, \infty$ into $w = i, 1, -i$ respectively.	8	K3	CO3
22.	Find the bilinear transformation that transforms the points $z = 1, i, -1$ into the points $w = 2, i, -2$ respectively.	8	K3	CO3
23.	Find the bilinear transformation that maps the points $z = 0, 1, \infty$ of the z- plane into the points $w = -5, -1, 3$ of the w- plane. Also find its fixed (Invariant) points.	8	K3	C03
24.	Find the bilinear transformation that transforms the points $z = 1, i, -1$ into the points $w = 2, i, -2$ respectively. Also	8	K3	CO3

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

	find its fixed(Invariant) points.			
25.	Find the bilinear transformation which maps the points $1, i, -1$ onto points $0, 1, \infty$, show that the transformation maps the interior of the circle of the <i>z</i> -plane onto the upper half of the <i>w</i> plane.		K3	C03
26.	Find the bilinear transformation that transforms -1 , 0, 1 of the z-plane onto -1 , $-i$, 1 of the w-plane. Show that under this transformation the upper half of the z-plane maps on to the interior of the unit circle $ w = 1$.	8	K3	CO 3

UNIT - IV

	Unit - IV / Part - A / 2 Marks				
S.No	Questions	Mark Splitup	K - Level	00	
1.	State Cauchy's Integral Theorem	2	K1	C04	
2.	Write Cauchy's Integral formula and its derivatives.	2	K1	C04	
3.	Define Taylor's Series	2	K1	C04	
4.	Expand $\frac{1}{z-2}$ at $z = 1$ in Taylor's series.	2	K2	C04	
5.	Define Laurent's Series Expansion.	2	K1	C04	
6.	Define pole and give an example.	2	K1	C04	
7.	Define an isolated singularity and give an example.	2	K1	CO4	
8.	Define Essential singularity and give an example.	2	K1	C04	
9.	Define Removable singularity and give an example.	2	K1	C04	
10.	Define Residue.	2	K1	C04	
11.	Discuss the nature of the singularity of the function $\frac{\sin x - x}{x^3}$	2	K2	CO4	
12.	Discuss the nature of the singularity of the function $\frac{a^2}{(x-a)^2}$	2	K2	C04	
13.	Discuss the nature of the singularity of the function $\frac{e^x}{x^2+4}$	2	K2	C04	
14.	Discuss the nature of the singularity of the function $\frac{\cot(\pi x)}{(x-a)^2}$	2	K2	CO4	
15.	State Cauchy's Residue Theorem	2	K2	C04	
16.	Find the residue of $\frac{1-e^{2z}}{z^4}$ at $z = 0$	2	K2	C04	
17.	Evaluate $\int_{C} \frac{dz}{z+4}$ where C is the circle $ z = 2$.	2	K2	C04	
18.	Find the residue of the function $f(z) = \frac{4}{z^{3}(z-2)}$.	2	K1	C04	