
UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai

Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech .IT)

COIMBATORE-641 035, TAMIL NADU

UNIT III

OBJECT AND CLASSES

CONSTRUCTORS

In Java, a constructor is a block of codes similar to the method. It is

called when an instance of the class is created. At the time of calling

constructor, memory for the object is allocated in the memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one

constructor is called.

It calls a default constructor if there is no constructor available in the

class. In such case, Java compiler provides a default constructor by

default.

There are two types of constructors in Java: no-arg constructor, and

parameterized constructor.

Note: It is called constructor because it constructs the values at the time

of object creation. It is not necessary to write a constructor for a class. It

is because java compiler creates a default constructor if your class

doesn't have any.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Java Default Constructor

A constructor is called "Default Constructor" when it doesn't have any

parameter.

Syntax of default constructor:

<class_name>(){}

Example of default constructor

//Java Program to create and call a default constructor
class Bike1{

//creating a default constructor

Note: We can use access modifiers while declaring a constructor. It

controls the object creation. In other words, we can have private,

protected, public or default constructor in Java.

https://www.javatpoint.com/access-modifiers

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

Bike1(){System.out.println("Bike is created");}

//main method

public static void main(String args[]){

//calling a default constructor

Bike1 b=new Bike1();

}

}

Test it Now
Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically

creates a default constructor.

Q) What is the purpose of a default constructor?

The default constructor is used to provide the default values to the

object like 0, null, etc., depending on the type.

Example of default constructor that displays the

default values

//Let us see another example of default constructor

//which displays the default values

class Student3{

int id;

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

String name;

//method to display the value of id and name

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

//creating objects

Student3 s1=new Student3();

Student3 s2=new Student3();

//displaying values of the object
s1.display();

s2.display();

}

}
Output:

0 null

0 null

Explanation:In the above class,you are not creating any constructor so

compiler provides you a default constructor. Here 0 and null values are

provided by default constructor.

Java Parameterized Constructor

A constructor which has a specific number of parameters is called a

parameterized constructor.

Why use the parameterized constructor?

The parameterized constructor is used to provide different values to

distinct objects. However, you can provide the same values also.

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

Example of parameterized constructor

In this example, we have created the constructor of Student class that

have two parameters. We can have any number of parameters in the

constructor.

//Java Program to demonstrate the use of the parameterized constructor

.

class Student4{

int id;

String name;

//creating a parameterized constructor

Student4(int i,String n){

id = i;

name = n;

}

//method to display the values

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

//creating objects and passing values

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan");

//calling method to display the values of object

s1.display();

s2.display();

}

}
Output:

111 Karan

222 Aryan

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Vanitha.G

Constructor Overloading in Java

In Java, a constructor is just like a method but without return type. It can

also be overloaded like Java methods.

Constructor overloading in Java is a technique of having more than one

constructor with different parameter lists. They are arranged in a way

that each constructor performs a different task. They are differentiated

by the compiler by the number of parameters in the list and their types.

Example of Constructor Overloading

//Java program to overload constructors

class Student5{

int id;

String name;

int age;

//creating two arg constructor
Student5(int i,String n){

id = i;

name = n;

}

//creating three arg constructor

Student5(int i,String n,int a){

id = i;

name = n;

age=a;

}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

s1.display();

s2.display();

} }

https://www.javatpoint.com/method-overloading-in-java

Output:

111 Karan 0

222 Aryan 25

Difference between constructor and method in

Java

Java Constructor Java Method

A constructor is used to initialize

the state of an object.

A method is used to expose the

behavior of an object.

A constructor must not have a

return type.

A method must have a return

type.

The constructor is invoked

implicitly.

The method is invoked

explicitly.

The Java compiler provides a

default constructor if you don't

have any constructor in a class.

The method is not provided by

the compiler in any case.

The constructor name must be

same as the class name.

The method name may or may

not be same as the class name.

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

Java Copy Constructor

There is no copy constructor in Java. However, we can copy the values

from one object to another like copy constructor in C++.

Advertisement

There are many ways to copy the values of one object into another in

Java. They are:

o By constructor

o By assigning the values of one object into another

o By clone() method of Object class

In this example, we are going to copy the values of one object into

another using Java constructor.

//Java program to initialize the values from one object to another objec

t.

class Student6{

int id;

String name;

//constructor to initialize integer and string

Student6(int i,String n){

id = i;

name = n;

}

//constructor to initialize another object

Student6(Student6 s){

id = s.id;

name =s.name;

}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student6 s1 = new Student6(111,"Karan");

Student6 s2 = new Student6(s1);

s1.display();

s2.display();

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

} }
Output:

111 Karan

111 Karan

Copying values without constructor

We can copy the values of one object into another by assigning the

objects values to another object.

class Student7{

int id; String name;

Student7(int i,String n){

id = i; name = n;

}

Student7(){}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student7 s1 = new Student7(111,"Karan");

Student7 s2 = new Student7();

s2.id=s1.id;

s2.name=s1.name;

s1.display(); s2.display();

} }
Output:

111 Karan

111 Karan

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

