
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai

Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT III

Basics of objects and classes in java

Java classes is a blueprint or template used to create

object.

It serves as a fundamental building block in Java

programming, encapsulating data (fields) and behaviors

(methods) into a single unit. you specify the attributes and

behaviors that objects of that class will possess.

The attributes, also known as fields or instance variables,

represent the state or characteristics of objects.

The behaviors, represented by methods, define the actions

that objects can perform.

Components of Java Class

In Java, a class serves as a blueprint for creating objects. It

encapsulates data and behavior into a single unit. Here are the

main components of a Java class:

• Class Declaration: The class declaration defines the

name of the class and any inheritance or interfaces it

implements.

public class MyClass {

// class body

}

• Fields (Instance Variables): Fields represent the state

or attributes of objects created from the class.

private int age;

• Methods: Methods define the behavior or actions that

objects of the class can perform.

public void display() {

System.out.println("Age: " + age);

}

Rules for creating a class

In order to create a class, these rules must be followed-

• The “class” keyword should be used.

• The name of the class should start with an uppercase

letter.

• The Java file can contain any number of classes but

should not have more than one public class. The file

name should be named after the public class followed by

the “.java” extension.

• One class should only inherit another single class.

Java Objects

A Java object is an instance of a class. It represents a

specific realization of the class blueprint, with its own unique

set of data values for the fields defined in the class.

Objects are created using the new keyword followed by

the class name, along with any required arguments to

initialize the object’s state. Each object created from a class

has its own separate memory space allocated for its fields,

allowing it to maintain its own state independent of other

objects created from the same class.

Objects encapsulate both data (fields) and behavior

(methods) into a single unit. They can interact with each

other by invoking methods and accessing fields. In essence,

objects are the building blocks of object-oriented

programming in Java, allowing developers to model real-

world entities and create modular, reusable, and maintainable

software components.

An object consists of :

1. State: It is represented by attributes of an object. It also
reflects the properties of an object.

2. Behavior: It is represented by the methods of an object.
It also reflects the response of an object with other
objects.

3. Identity: It gives a unique name to an object and enables
one object to interact with other objects.

Syntax of an object

The syntax for creating an object in Java is:

ClassName objectName = new ClassName();

For example:

Car myCar = new Car();

Here, Car is the class name, myCar is the object name,

and new Car() instantiates a new object of the Car class.

Difference Between Java Classes and Object

3 Ways to initialize object

There are 3 ways to initialize object in Java.

1. By reference variable

2. By method

3. By constructor

1) Object and Class Example: Initialization

through reference

Initializing an object means storing data into the

object. Let's see a simple example where we are going

to initialize the object through a reference variable.

class Student{

int id;

String name;

}

class TestStudent2{

public static void main(String args[])

{Student s1=new Student();

s1.id=101;

s1.name="Sonoo";

System.out.println(s1.id+" "+s1.name);//printing members with a

white space

}

}

Output:

101 Sonoo

We can also create multiple objects and store
information in it through reference variable.

File: TestStudent3.java

class Student{

int id;

String name;

}

class TestStudent3{

public static void main(String args[]){

//Creating objects

Student s1=new Student();

Student s2=new Student();

//Initializing

objectss1.id=101;

s1.name="Sonoo";

s2.id=102;

s2.name="Amit";

101 Sonoo
102 Amit

//Printing data System.out.println(s1.id+" "+s1.name);

System.out.println(s2.id+" "+s2.name);

}

}

Output:

1) Object and Class Example: Initialization

through method

In this example, we are creating the two objects of
Student class and initializing the value to these
objects by invoking the insertRecord method. Here,
we are displaying the state (data) of the objects by
invoking thedisplayInformation() method.

File: TestStudent4.java

class

Student{ int

rollno;

String name;

void insertRecord(int r, String n)

{

rollno=r;

name=n;
}

void displayInformation(){System.out.println(rollno+"

"+name);}

}

class TestStudent4{

public static void

main(String args[]){

Student s1=new Student();

Student s2=new Student();

s1.insertRecord(111,"Karan"

);

s2.insertRecord(222,"Aryan"

); s1.displayInformation();

s2.displayInformation();

}

}

Output:

2) Object and Class Example: Initialization

through a constructor

We will learn about constructors in Java later.

Object and Class Example: Employee

Let's see an example where we are maintaining records of employees.

File: TestEmployee.java

class Employee{

int id;

String name;

float salary;

void insert(int i, String n, float s)

{ id=i;

name=n;

salary=s;

}

void display(){System.out.println(id+" "+name+"

"+salary);}

}

public class TestEmployee {

public static void

main(String[] args) {

Employee e1=new

Employee(); Employee

e2=new Employee();

Employee e3=new Employee();

e1.insert(101,"ajeet",45000);

e2.insert(102,"irfan",25000);

e3.insert(103,"nakul",55000);

e1.display();

e2.display();

e3.display();

}

}

Output:

Object and Class Example: Rectangle

There is given another example that maintains the
records of Rectangle class.

File: TestRectangle1.java

class Rectangle{

int length;

int width;

void insert(int l,

int w){ length=l;

width=w;

}

54 5

void calculateArea(){System.out.println(length*width);}

}

class TestRectangle1{

public static void main(String args[])

{Rectangle r1=new Rectangle();

Rectangle r2=new

Rectangle();

r1.insert(11,5);

r2.insert(3,15);

r1.calculateArea();

r2.calculateArea();

}

}

Output:

