

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

CourseCode:	23MAT103
CourseName:	DIFFERENTIAL EQUATIONS AND TRANSFORMS
Year/Sem:	I/II

QUESTION BANK UNIT IV FOURIER SERIES AND FOURIER TRANSFORMS FOURIER SERIES

	PART –A						
Q.No	Question	Bloom's Taxonomy Level	Domain				
1.	State the Dirichlet's conditions for a function $f(x)$ to be expanded as a Fourier series.	BTL -1	Remembering				
	Solution:(i) f(x) is periodic, single valued and finite.(ii) f(x) has a finite number of discontinuities in any one period(iii) f(x) has a finite number of maxima and minima.(iv) f(x) and f'(x) are piecewise continuous.						
2.	Find the value of a_0 in the Fourier series expansion of $f(x)=e^x$ in (0,2 π). Solution: $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} e^x dx = 0.$ If $(\pi - x)^2 = \frac{\pi}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos nx}{n^2} in 0 < x < 2\pi$, then deduce that value	BTL -1	Remembering				
3.	If $(\pi - x)^2 = \frac{\pi}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ in $0 < x < 2\pi$, then deduce that value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Solution: Put x=0, $\sum_{n=1}^{\infty} \frac{1}{n^2} = 6$.	BTL -1	Remembering				
4.	Does $f(x) = \tan x$ posses a Fourier expansion? <u>Solution</u> No since tanx has infinite number of infinite discontinuous and not satisfying Dirichlet's condition.	BTL -2	Understanding				
5.	Determine the value of a_n in the Fourier series expansion of $f(x) = x^3$ in (- π , π). Solution: $a_n = 0$ since $f(x)$ is an odd function	BTL -4	Evaluating				
6.	Find the constant term in the expansion of $\cos^2 x$ as a Fourier series in the interval (- π , π). Solution: $a_0 = 1$	BTL -2	Understanding				

7.	If $f(x)$ is an odd function defined in (-l, l). What are the values of a_0 and a_n ? Solution: $a_n = 0 = a_0$	BTL -2	Understanding
8.	If the function $f(x) = x$ in the interval $0 < x < 2$ then find the constant term of the Fourier series expansion of the function f. Solution: $a_0 = 4 \pi$	BTL -2	Understanding

	Express $f(x) = 1$ and $f(x) = 1$		
	Expand $f(x) = 1$ as a half range sine series in the interval $(0, \pi)$.		
9.	Solution: The sine series of $f(x)$ in $(0, \pi)$ is given by	BTL -4	Analyzing
	$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$		
	where $b_n = \frac{2}{\pi} \int_0^{\pi} \sin nx dx = -\frac{2}{n\pi} [\cos nx]_0^{\pi} = 0$ if n is even		
	= ⁴ if n is odd		
	$f(\mathbf{x}) = \sum_{n=odd}^{\infty} \frac{4}{n\pi} \sin n\mathbf{x} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)\mathbf{x}}{(2n-1)}.$		
	Find the value of the Fourier Series for		
10.	$\mathbf{f}(\mathbf{x}) = 0 -\mathbf{c} < \mathbf{x} < 0$	BTL -3	Applying
	= 1 0 < x < c at x = 0		
	Solution: $f(x)$ at x=0 is a discontinuous point in the middle.		
	f(x) at x = 0 = $\frac{f(0-) + f(0+)}{2}$		
	2		
	$f(0-) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} 0 = 0$		
	$h \rightarrow 0 \qquad h \rightarrow 0$		
	$f(0+) = \lim_{h \to 0^+} f(0+h) = \lim_{h \to 0^+} 1 = 1$		
	$h \rightarrow 0 \qquad h \rightarrow 0$		
11	$\therefore f(x) \text{ at } x = 0 \rightarrow (0+1)/2 = 1/2 = 0.5$		Analyzina
11.	What is meant by Harmonic Analysis? <u>Solution</u> : The process of finding Euler constant for a tabular	BTL -4	Analyzing
	function is known as Harmonic Analysis.		
12.	Find the constant term in the Fourier series corresponding to $f(x) =$	BTL -1	Remembering
	$\cos^2 x$ expressed in the interval $(-\pi,\pi)$.		
	Solution: Given $f(x) = \cos^2 x = \frac{1 + \cos 2x}{2}$		
	2		
	W.K.T f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$		
	To find $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 x dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1 + \cos 2x}{2} dx = \frac{1}{\pi} \left[x + \frac{\sin 2x}{2} \right]_{0}^{\pi}$		
	$= \frac{1}{\pi} [(\pi + 0) - (0 + 0)] = 1.$		

13.	Define Root Mean Square (or) R.M.S value of a function f(x) over	BTL -3	Applying
10.	the interval (a,b).	DIL-3	Apprying
	Solution: The root mean square value of $f(x)$ over the interval (a,b)		
	is defined as		
	b		
	$\int [f(x)]^2 dx$		
	R.M.S. = $\sqrt{\frac{\int [f(x)]^2 dx}{h}}$.		
	b-a		
14.	Find the root mean square value of the function $f(x) = x$ in the	BTL -1	Remembering
	interval $(0,l)$.		
	Solution: The sine series of $f(x)$ in (a,b) is given by		
	R.M.S. $= \sqrt{\frac{\int_{a}^{b} [f(x)]^2 dx}{h - a}} = \sqrt{\frac{\int_{0}^{l} [x]^2 dx}{l - 0}} = \frac{l}{\sqrt{3}}.$		
	R.M.S. = $\sqrt{\frac{a}{b}} = \sqrt{\frac{b}{c}} = \sqrt{\frac{b}{c}}$.		
15.			Esselse stime
13.	If $f(x) = 2x$ in the interval (0,4), then find the value of a_2 in the Fourier series expansion	BTL -5	Evaluating
	2 Γ		
	Fourier series expansion. <u>Solution:</u> $a_2 = \frac{2}{4} \int_{0}^{1} 2x \cos\left[\frac{\pi}{x}\right] dx = 0.$		
16 .	To which value, the half range sine series corresponding to $f(x) = x^2$	BTL -4	Analyzing
	expressed in the interval $(0,5)$ converges at $x = 5$?.		
	<u>Solution:</u> $x = 2$ is a point of discontinuity in the extremum.		
	$\therefore [f(\mathbf{x})]_{\mathbf{x}=5} = \frac{f(0) + f(5)}{2} = \frac{[0] + [25]}{2} = \frac{25}{2} .$		
	2 2 2		
	If the Fourier Series corresponding to $f(x) = x$ in the interval $(0, 2 \pi)$		
17.	is $a_0 + \sum_{n=0}^{\infty} (a \cos nx + b \sin nx)$ without finding the values of	BTL -4	Analyzing
	is $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a \cos nx + b \sin nx)$ without finding the values of	DIU-4	10
	a^2 \sum_{α}^{∞}		
	$a_{0, a_{n}}$, b_{n} find the value of $\frac{a^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$.		
	Solution: By Parseval's Theorem		
	$\frac{a_0^2}{a_0^2} + \sum_{n=1}^{\infty} (a_n^2 + b^2) = \frac{1}{2} \int_{1}^{2\pi} [f(x)]^2 dx = \frac{1}{2} \int_{1}^{2\pi} x^2 dx = \frac{1}{2} \left[\frac{x^3}{x^2} \right]_{1}^{2\pi}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$=\frac{8}{-\pi}\pi^2$		
	3		

18 .	Obtain the first term of the Fourier series for the function $f(x) = x^2$, -	BTL -1	Remembering
	$\pi < x < \pi$.		
	Solution: Given $f(x) = x^2$, is an even function $-\pi < x < \pi$.		
	Therefore,		
	$a_{o} = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x_{2} dx = \frac{2}{\pi} \left[\frac{x^{3}}{3} \right]_{0}^{\pi} = \frac{2}{3} \pi_{2}.$		
19 .	Find the co-efficient b_n of the Fourier series for the function $f(x) = x \sin x$ in (-2, 2).	BTL -4	Analyzing
	<u>Solution</u> : xsinx is an even function in $(-2,2)$. Therefore $b_n = 0$.		
20 .	Find the sum of the Fourier Series for	BTL -3	Applying
	$\mathbf{f}(\mathbf{x}) = \mathbf{x} 0 < \mathbf{x} < 1$		
	= 2 1 < x < 2 at x = 1.		
	<u>Solution:</u> $f(x)$ at x=1 is a discontinuous point in the middle.		
	f(x) at x = 1 = $\frac{f(1-) + f(1+)}{1-1}$		
	2		
	$f(1-) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} 1-h = 1$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(1+) = \lim_{h \to \infty} f(1+h) = \lim_{h \to \infty} 2 = 2$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	\therefore f(x) at x = 1 \rightarrow (1 + 2) / 2 = 3 / 2 = 1.5		
	PART – B		-

1.(a)	Obtain the Fourier's series of the function $f(x) = \begin{cases} x & for 0 < x < \pi \\ 2\pi - x & for \pi < x < 2\pi \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$	BTL -1	Remembering
1.(b)	Find the Fourier's series of $f(x) = x $ in $-\pi < x < \pi$ And deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$ 4 5 f(x) = 9 18 24 28 26 20	BTL -1	Remembering

2. (a)	Find the Fourier's series expansion of period 2 <i>l</i> for $f(x) = (l - x)^2$ in the range (0,2 <i>l</i>). Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$	BTL -2	Understanding
2.(b)	Find the Fourier series of periodicity 2π for $f(x) = x^2$ in $-\pi \le x \le \pi$. Hence deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$.	BTL -2	Understanding
	Find the Fourier series upto second harmonic for the following data:	BTL -1	Remembering
3. (b)	Find the Fourier series of $f(x) = 2x - x^2$ in the interval $0 < x < 2$	BTL -1	Remembering
	Obtain the half range cosine series of the function $f(x) = \begin{cases} x & in \left(0, \frac{l}{2}\right) \\ l - x \left(l, l\right) \\ l & \frac{l}{2} \end{cases}$	BTL -4	Analyzing
4.(b)	Find the half range sine series of the function $f(x) = x(\pi - x)$ in the interval (0, Π).	BTL -3	Applying
5.(a)	Determine the Fourier series for the function $f(x) = \sin x in - \pi \times .$	BTL -4	Analyzing
5.(b)	Find the complex form of the Fourier series of $f(x) = e^{-ax}$ in (-l,l)	BTL -1	Remembering

6.(a)	Find th	ne Fourie	r series for	BTL -2	Remembering				
6.(b)	Find th	ne Fourie	r series ex	BTL - 2	Remembering				
7.(a)	Find the Fourier series for $f(x) = \begin{cases} x & (0, \pi/2) \\ \pi - x & (\pi/2, 2\pi) \end{cases}$.								Analyzing
7.(b)	Find the Fourier series of $f(x) = x + x^2$ in (-1, 1) with period 21.								Applying
8. (a)	Find the Fourier series as far as the second harmonic to representthe function $f(x)$ with period 6, given in the following table.X012345 $f(x)$ 012345								Analyzing
	f(x)	9	18	24	28	26	20		

	(An Autonomous Institution)		INSPIRATO IN						
	Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU								
8.(b)	Find the complex form of the Fourier series of $f(x)=e^{-x}$ in - $1 < x < 1$	BTL -2	Remembering						
9. (a)	Find the half range cosine series for the function $f(x) = x(\pi - x) \text{ in } 0 < x < \pi.$ Deduce $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$	BTL -2	Remembering						
0(1)	Obtain the Fourier series to represent the function $f(x) = x, -\pi < x < \pi and deduce \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$								
9.(b) 10.(a)	(<i>M/J</i> 2012) Find the half range sine series of $f(x) = lx - x$ in (0,l))	BTL -3	Applying						
10.(b)	Obtain the Equation particle expansion of $f(x) = x$ in $0 < x < 4$	BTL -1	Remembering						
	Obtain the Fourier cosine series expansion of $f(x) = x$ in 0 <x<4. Hence deduce the value of $\begin{array}{c} 1 \\ + 1 \\ \overline{1^4} \end{array}$ $\begin{array}{c} 1 \\ \overline{2^4} \end{array}$ $\begin{array}{c} 1 \\ \overline{3^4} \end{array}$ $\begin{array}{c} 1 \\ 1 \end{array}$ $\begin{array}{c} \pi^4 \end{array}$</x<4. 	BTL -1	Remembering						
11.(a)	$\frac{1}{1} \qquad \frac{1}{1} \qquad \frac{\pi^{+}}{1}$ By using Cosine series show that $\frac{1}{1^{4}} + \frac{1}{2^{4}} + \frac{1}{3^{4}} + \dots = \frac{1}{96}$ for $f(x) = x$ in $0 < x < \pi$ Find the Fourier cosine series up to third harmonic to represent	BTL -4	Analyzing						
11.(b)	the function given by the following data: X 012345Y4815762	BTL -4	Analyzing						
12.(a)	Show that the complex form of Fourier series for the function $f(x)=e^{ax}(-\pi,\pi)$	BTL -1	Remembering						
12.(b)	Find the complex form of the Fourier series of $f(x)=e^{-x}$ in $-1 < x < 1$.	BTL -4	Analyzing BTL -4						
	Calculate the first 3 harmonics of the Fourier of $f(x)$ from \times the fight \mathcal{B} \mathcal		D10 -4						

13.

23MAT103 - DIFFE E E TIAL E UNTION SAND HEADS OF MANSON SAND HEADS AND HEADS OF MANSON SAND HEADS AND HEADS AND

An	
aly	
zin	
g	

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

14.(a)		e comple e ^{-s} in –	BTL -4	Analyzing						
14.(b)	Find the Fourier series up to the second harmonic from the following table.							the	BTL - 4	Analyzing
		X	0	1	2	3	4	5		
		f(x)	9	18	24	28	26	20		

FOURIER TRANSFORM

	PART – A		
CO Mappir	ng: C214.2		
Q.No	Questions	BT Level	Competence
1	Prove that $F[f(x - a)] = e^{ias}F(s)$	BTL-4	Analyzing
	Proof:		
	$F(f(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{\pi}{1}}^{\infty} f(x) e^{ixx} dx$		
	$F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a)e^{ixx} dx, put \ t = x-a;$	dt = dx	
	$F(f(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$ $F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a) e^{isx} dx, put \ t = x^{-}a;$ $F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{is(t+a)} dt = e^{isa} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{is(t+a)} dt$	$\Rightarrow t \rightarrow \pm 0$ $e^{ist}dt = e$	$^{isa}F(s).$
2	Prove that $F(f(x)\cos ax) = \frac{1}{2}[F(s+a)+F(s-a)]$.	BTL-1	Remembering
	<u>Proof:</u>		

$$F(f(x)\cos ax) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)\cos ax e^{ix} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{ixis} dx + \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{ixis} dx$$

$$= \frac{1}{2} \left[\sqrt{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x) e^{ixis} dx + \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{ixis} dx \right]$$

$$= \frac{1}{2} [F(s+a) + F(s-a)].$$
BTL-2 Understanding
Proof:
$$Proof: \qquad 2^{-x} \qquad x^{-x}$$

$$F_{x}(f(x)\cos ax) = \sqrt{\frac{2\pi}{\pi}} \int_{0}^{\pi} f(x) \sin ax \cos sx dx$$

$$= \frac{1}{2} \sqrt{\frac{2\pi}{\pi}} \int_{0}^{\pi} f(x) (\sin(s^{+}a)x^{+}\sin(s^{-}a)x) dx$$

$$= \frac{1}{2} \left[\sqrt{\frac{2\pi}{\pi}} \int_{-\pi}^{\pi} f(x) (\sin(s^{+}a)x dx + \sqrt{\frac{2\pi}{\pi}} \int_{0}^{\pi} f(x) \sin(s-a)x dx \right]$$

$$= \frac{1}{2} [F_{x}(s+a) + F_{y}(s-a)].$$
BTL-4 Analyzing
$$F_{x}(f(x)) = \sqrt{\frac{2\pi}{\pi}} \int_{0}^{\pi} f(x) \sin sx dx = \sqrt{\frac{2\pi}{\pi}} \int_{0}^{\pi} e^{-s} \sin sx dx$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{e^{-s}}{(1+s^{-s})} (-\sin sx - s\cos sx) \right]_{0}^{-1} = \sqrt{\frac{2}{\pi}} \frac{s}{(1+s^{-s})}$$

5	Write the Fourier transform pair. Proof:	BTL-1	Remembering
	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$ $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$		
6	Find the Fourier sine transform of $\frac{1}{x}$.	BTL-2	Understanding
	Solution:		
	$\begin{bmatrix} \begin{pmatrix} (\\ f \\ x \end{pmatrix} \end{pmatrix} = \sqrt{\frac{2^{-\infty}}{\pi}} \begin{pmatrix} \\ f \\ x \end{pmatrix} \sin sxdx = \sqrt{\frac{2^{-\infty}}{\pi}} \frac{1}{\sqrt{\frac{\pi}{\pi}}} \sin sxdx$ $put sx = \theta; sdx = d\theta; = \sqrt{\frac{2^{-\infty}}{\pi}} \sin \theta$		
	put $sx = \theta$; $sdx = d\theta$; $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta =$	$\sqrt{\frac{2}{\pi}}\frac{\pi}{2}$	$=\sqrt{\frac{\pi}{2}}.$
7	Find the Fourier cosine transform of $f(ax)$.	BTL-2	Understanding
	Solution:		
	$= \sqrt{\frac{2}{\pi_0}} \int f(t) \cos\left(\frac{st}{a}\right) \frac{dt}{a} = \frac{1}{a} F_c\left(\frac{s}{a}\right).$		
8	Find the Fourier Cosine transform of e^{-ax} .	BTL-1	Remembering
	Solution: $F\left[e^{-ax}\right] = \frac{2}{\sqrt{\pi}\int_{0}^{a}} e^{-ax} \cos sx dx = \frac{2}{\sqrt{\pi}\left[\int_{a}^{-ax} \left(-a\cos sx\right)\right]} \left(-a\cos sx\right)$ $= \sqrt{\frac{2}{\pi}\frac{a}{a^{2}+s^{2}}}.$	sx + ss	in sx)
	$-\sqrt{\pi} \frac{1}{a^2+s^2}$		

9	Find the Fourier transform of $f(x) = \begin{cases} e^{ix}, \\ f(x) = \end{cases}$	a < x < b	BTL-1	Remembering
	[0,	x < a, x > b		
	<u>Solution:</u>			

is known as Fourier integral theorem

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

$$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{ikx} e^{isx} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{i(s+k)x} dx = \frac{1}{2\pi} \begin{bmatrix} e^{i(s+k)x} \\ i(s+k) \end{bmatrix}_{a}^{b}$$
$$= \frac{1}{\sqrt{2\pi}} \begin{bmatrix} \frac{e^{i(s+k)b} - e^{i(s+k)a}}{i(s+k)} \end{bmatrix}.$$

10State convolution theorem.BTL-1RememberingSolution : If F(s) and G(s) are fourier transforms of
f(x) and g(x) respectively then the fourier transform
of the convolutions of f(x) and g(x) is the product of
their fourier transform.BTL-1Remembering

11 Write the Fourier cosine transform pair?
BTL-2 Understanding
Solution :

$$F_{c}(s) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} f(x) \cos sx dx$$

$$f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{c}(f(x) \cos sx ds)$$

12 Write Fourier sine transform and its inversion formula? BTL-4 Analyzing

$$F_{s}(s) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$$
Solution :

$$f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{s}(f(x) \sin sx ds)$$
13 State the modulation theorem in Fourier transform .
Solution : If F(s) is the Fourier transform of f(x), then
F[f(x) cos ax] = 1/2 [F (s+a) +F(s-a).
14 State the Parsevals identity on Fourier transform.
Solution : If F(s) is the Fourier transform of f(x), then

$$\int_{-\infty}^{\infty} |f(x)|^{2} dx = \int_{-\infty}^{\infty} |F(s)|^{2} ds$$
15 State Fourier Integral theorem .
Solution : If f(x) is piecewise continuously
differentiable &
f(x) = \int_{-\infty}^{\infty} \int f(t)e^{is(x-t)} dt ds
23MAT103 - DIFFERENTIAL EQUATIONS AND TRANSFORMS
BTL-4 Analyzing
MTL-4 Analyzing
BTL-4 Analyzing

in	(An Autonomous Institution)					
		Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (C ycle H I) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU				
BTL	-1		Reme			
			mbe ri ng			
	16	Define self-reciprocal with respect to Fourier Transform. Solution: If a transformation of a function $f(x)$ is equal to $f(s)$ then the function $f(x)$ is called self-reciprocal	BTL-4	Analyzing		

	PART – B					
1	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x \le a \\ 0, x \neq a \end{cases}$ Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos\left(\frac{s}{2}\right) dx.$	BTL-4	A‰abjanigg			
2	Find the Fourier cosine transform of $f(x) = e^{-ax}, a > 0 \text{ and } g(x) = e^{-bx}, b > 0.$ Hence evaluate $\int_{0}^{0} (x_2 + 1)(x_2 + 9)$	BTL-4	Analyzing			
3	Find the Fourier Transform of f(x) given by $f(x) = \begin{cases} a - x , & x \le a \\ 0, & \pi \\ 0 & \pi \end{cases}$ Hence show that $\int_{a}^{\infty} (\sin t) \int_{a}^{2} \pi \pi \int_{a}^{ x } \phi a \\ \int_{0}^{\infty} (\sin t) \int_{a}^{4} \pi \int_{0}^{\pi} (\sin t) \int_{0}^{4} dt = -\frac{\pi}{3}.$	BTL-4	Analyzing			

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

	DEPARTMENT OF MATHEMATICS		
4	Find the Fourier transform of $f(x) = \begin{bmatrix} 1, for x \le a \\ 0, for x \ne a \ne 0 \\ \text{identity prove that} \int_{\infty}^{\infty} \left(\frac{\sin t}{t} \right) \frac{\pi}{2} dt = \frac{\pi}{2}.$	BTL-4	Analyzing
5	Find the Fourier sine and cosine transform of e^{-ax} and hence find the Fourier sine transform of x and Fourier <u>cosine</u> transform of $\frac{1}{x^2 + a^2}$.	BTL-4	Analyzing
6	Find the Fourier cosine transform of e^{-x^2} .	BTL-4	Analyzing
7	Prove that $\begin{array}{c}1\\\text{is self reciprocal under Fourier}\\\hline \\\hline \\ \\\hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \hline \\$	BTL-4	Analyzing

	and cosine transforms.			
8	Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x_2 + a_2)(x_2 + b_2)}$ using Fourier	BTL-4	Analyzing	
9	By finding the Fourier cosine transform of $f(x) = e^{-ax}(a \neq 0)$ and using Parseval's identity for cosine transform evaluate $\int \frac{dx}{(a^2 + x^2)^2}$.	BTL-3	Applying	

DEPARTMENT OF MATHEMATICS

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

10	If $F(s)$ and $G(s)$ are the Fourier cosine transform of $f(x)$ and $g(x)$ respectively, then prove that $\int_{0}^{\infty} f(x)g(x)dx = \int_{0}^{\infty} F_{c}(s)G_{c}(s)ds.$	BTL-3	Applying	
11.	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \pi x \pi 1 \\ 2 - x, & 1 \pi x \pi 2 \\ 0, & x \neq 2. \end{cases}$	BTL-4	Analyzing	
12.	If $F(f(x)) = F(s)$, prove that $F(F(x)) = f(s)$.	BTL-3	Applying	
13	Use transform method to evaluate $\int_{x^2 + a^2}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$	BTL-3	Applying	