CourseCode:	23MAT103
CourseName:	DIFFERENTIAL EQUATIONS AND TRANSFORMS
Year/Sem:	I/II

QUESTION BANK UNIT III - PARTIAL DIFFERENTIAL EQUATIONS

PART- A			
Q.No.	Question	Bloom's Taxonomy Level	Domain
	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^{2}$. Solution p=2ax, q=2by a= p/2x, b=q/2y therefore PDE is 2z=px+qy.	BTL -4	Analyzing
2.	Eliminate the arbitrary function from $z = f(y/x)$ and form the partial differential equation Solution: $px+qy=0$	BTL -4	Analyzing
5.	Form the PDE from $(x - a)^2 + (y - b)^2 + z^2 = r^2$. Solution Differentiating the given equation w.r.t x &y, $z^2[p^2+q^2+1]=r^2$.	BTL -3	Applying
	Find the complete integral of p+q=pq. Solution p=a, q=b therefore $z=ax + \frac{a}{a-1}y + c$.	BTL-4	Analyzing
5.	Form the partial differential equation by eliminating the arbitrary constants a, b from the relation $log(az 1) x ay b$.	BTL -4	Analyzing
	Solution: log(az - 1) = x + ay + b		
	Diff. p.w.r.t x&y, $\frac{ap}{ap} = 1 - eqn1$ & $\frac{aq}{aq} = a - eqn2$		
	$\frac{Eqn1}{Eqn2} \Rightarrow q = ap \ Sub \ in \ a(z-p) = 1 \Rightarrow q(z-p) = p$		
6.	Form the PDE by eliminating the arbitrary constants a,b from the relation $z = ax^3 + by^{3}$ %. Solution: Differentiate w.r.t x and y $p = 3ax^2$, $q = 3by^2$ therefore $3z = px+qy$.	BTL -4	Analyzing
7.	Form a p.d.e. by eliminating the arbitrary constants from $z = (2x^2+a)(3y-b)$.	BTL -4	Analyzing
	Solution: $p = 4x(3y-b), q = 3(2x^2+a)$ 3y - b = p/4x $(2x^2+a) = q/3$. Therefore $12xz = pq$.		
8.	Form the partial differential equation by eliminating arbitrary function ϕ from $\phi(x^2 + y^2, z - xy) = 0$ Solution: $u = x^2 + y^2$ and $v = z - xy$. Then $= 2x$, $u_y = 2y$; $v_x = p - y$;	BTL -4	Analyzing
	$v_y = q-x. \begin{vmatrix} u_x & u_y \\ v_x & v_x \end{vmatrix} = 0 \Rightarrow 2xq - 2x^2 - 2yp + 2y^2 = 0$		

9.	Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^2 + (y-b)^2 + z^2 = 1$ Solution: Differentiating the given equation w.r.t x &y,	BTL -4	Analyzing
	$z^{2}[p^{2}+q^{2}+1]=1$		
10.	Solve [D -8DD' -D D'+12D']z = 0 Solution: The auxiliary equation is $m^3-m^2-8m+12=0$; m =2,2,-3 The solution is z = f ₁ (y+x)+f ₂ (y+2x)+xf ₃ (y+2x).	BTL -3	Applying
11.	Find the complete solution of $q = 2 px$ Solution Find the complete solution of $q = 2 px$ Solution: Let $q = a$ then $p = a/2x$ dz = pdx + qdy 2z = alogx+2ay+2b.	BTL -3	Applying

12.	Find the complete solution of p+q=1	BTL -3	Applying
	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = 1-a$. Therefore $z = px + (1-a)y + c$		
13.	Find the complete solution of $p^3 - q^3 = 0$	BTL -3	Applying
	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = a$. Therefore $z = px + qy + c$		
14.	Solve $[D^3+DD^2-D^2D^2-D^3]z = 0$ Solution	BTL -3	Applying
	The auxiliary equation is $m^3-m^2+m-1=0$		
	$m = 1,-i, i \Rightarrow$ The solution is $z = f_1(y+x)+f_2(y+ix)+f_3(y-ix)$.		
	Solve $(D-1)(D-D'+1)z = 0$.	BTL -3	Applying
	<u>Solution</u> $z = e^{x} f_{1}(y) + e^{-x} f_{2}(y+x)$		
	Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = 0.$	BTL -3	Applying
10.	Solution: A.E: $D[D-D'+1] =$		
	h=0, h=k-1		
	$z = f_1(y) + e^{-x}f_2(y+x)$		
17.	h=0, h=k-1 $z = f_1(y) + e^{-x}f_2(y + x)$ Solve $(D^4 - D^{*4})z = 0$. Solution: A.E.: m ⁴ -1=0, m=+1, +i.	BTL -3	Applying
17.			
	$Z=C.F=f_{1}(y+x)+f_{2}(y-x)+f_{3}(y+ix)+f_{4}(y-ix).$		
18.	Solve $(D^2 - DD' + D' - 1)Z = 0.$	BTL -3	Applying
	Solution: The given equation can be written as		
	(D-1)(D-D'+1)Z = O		
	$z = e^{x} f_{1}(y) + e^{-x} f_{2}(y+x)$		
19.	Solve $xdx + ydy = z$.	BTL -3	Applying
	Solution The subsidiary equation is $\frac{dx}{dx} = \frac{dy}{dx} = \frac{dz}{dx}$		

yz20.Form the p.d.e. by eliminating the arbitrary constants fromBTL -3 $z = ax + by + ab$ Solution: $z = ax + by + ab$ Applying		$\frac{dx}{x} = \frac{dy}{y} \Rightarrow \log x = \log y + \log u$ $u = \frac{x}{2} \text{ Similarly } v = \frac{x}{2}.$
z = ax + by + ab		y z
z=ax +by +ab	20.	Form the p.d.e. by eliminating the arbitrary constants from BTL -3 Applying
Solution: $z = ax + by + ab$		z=ax+by+ab
		Solution: z= ax+by+ab
p = a & q = b		p = a & q = b
The required equation $z = px+qy+pq$.		The required equation $z = px+qy+pq$.

	PART – B			
1.(a)	Find the PDE of all planes which are at a constant distance 'k' units from the origin.	BTL -4	Analyzing	
1. (b)	Find the singular integral of $z = px + qy + 1 + p^2 + q^2$	BTL -2	Understandi ng	
2. (a)	Form the partial differential equation by eliminating arbitrary function Φ from $\Phi(x^2 + y^2 + z^2, ax + by + cz) = 0$	BTL -4	Analyzing	
2.(b)	Find the singular integral of $z = px + qy + p^2 + pq + q^2$	BTL -2	Understandi ng	
3. (a)	Form the partial differential equation by eliminating arbitrary functions <i>f</i> and <i>g</i> from $z = x f(x/y) + y g(x)$	BTL -4	Analyzing	
3.(b)	Find the singular integral <u>of</u> $z = px + qy + \sqrt{1 + p^2 + q^2}.$	BTL -3	Applying	
4. (a)	Solve (D -7DD' -6D') $z = sin(x+2y)$.	BTL -3	Applying	
4.(b)	Form the partial differential equation by eliminating arbitrary function f and g from the relation $z = xf(x+t) + g(x+t)$	BTL -4	Analyzing	
5. (a)	Solve (D ² -2DD') $z=x^3y+e^{2x-y}$.	BTL -3	Applying	
5.(b)	Solve $x(y-z)p+y(z-x)q=z(x-y)$.	BTL-3	Applying	
6. (a)	Find the singular integral of px+qy+p²-q²	BTL -2	Understandi ng	
6.(b)	Find the general solution of $z = px + qy + p^2 + pq + q^2$.	BTL -3	Applying	
7. (a)	Find the complete solution of $z^2(p^2+q^2+1) = 1$	BTL -4	Analyzing	

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

1 1			
7. (b)	Find the general solution of $(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$	BTL -2	Understanding
8. (a)	Find the general solution of $(D^2 + D'^2)z = x^2 y^2$	BTL -2	Understanding
8.(b)	Find the complete solution of $p^2 + x^2 y^2 q^2 = x^2 z^2$	BTL -2	Understanding
9. (a)	Solve $(D^2 - 3DD' + 2D'^2) = (2 + 4x)e^{x+2y}$	BTL -3	Applying
9.(b) O	Obtain the complete solution of $z = px+qy+p^2-q^2$	BTL -2	Understanding
10.(a)	Solve $x(y^2 - z^2) p + y(z^2 - x^2)q = z(x^2 - y^2)$	BTL -3	Applying
10.(b)	Solve $(D^2 - 3DD' + 2D'^2)z = \sin(x + 5y)$	BTL -3	Applying
11(a)	Solve the Lagrange's equation $(x + 2z) p + (2xz - y)q$ = $x^2 + y$	BTL -3	Applying
11(b)	Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{2x+4y}$	BTL -3	Applying
12(a)	Solve $(D^2 + DD' - 6D'^2)z = y \cos x$	BTL -3	Applying
12(b)	Solve the partial differential equation $(x^2 - yz)p + (y^2 - xz)q = z^2 - xy$	BTL -3	Applying
13(a)	Solve $(D^2 - DD' - 20D'^2) z = e^{5s+y} + sin (4x - y).$	BTL -3	Applying
13(b)	Solve $(2D^2 - DD' - D'^2 + 6D + 3D')z = xe^{y}$	BTL -3	Applying
14(a)	Solve $(D^2 - 2DD')z = x^3y + e^{2x-y}$	BTL -3	Applying
14(b)	Solve $(D^3 - 7DD'^2 - 6D'^3)z = \sin(x + 2y)$	BTL -3	Applying

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

15(a)	Form the PDE by eliminating the arbitrary function from the relation	BTL -4	Analyzing
	$z = y^2 + 2f\left(\frac{1}{x} + \log y\right).$		
15(b)	Solve the Lagrange's equation $(x+2z)p+(2xz-y) = x + y$.	BTL -3	Applying
16(a)	Solve $x^2p^2+y^2q^2=z^2$.	BTL -3	Applying
16(b)	Solve $(D^2+DD'-6D'^2)z = y \cos x$	BTL -3	Applying