

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

UNIT-V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

JAYLOR SERIES METHOD:

Consider the first order differential egn

$$\frac{dy}{dx} = f(x,y) \quad \text{with } y(x_0) = y_0$$

Hence the Taylor's series expansion of you is

$$y(\alpha) = y_0 + (\alpha - x_0) y_0' + (\alpha - x_0)^2 y_0'' + \dots$$

$$y(x_1) = y_1 = y_0 + \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \cdots$$

$$y(x_2) = y_2 = y_1 + \frac{h}{1!} y_1' + \frac{h^2}{2!} y_1'' + \dots$$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

Sch:

$$y' = x^2y - 1$$
 $x_0 = 0$, $y_0 = 1$, $h = 0.1$

Taylor solues formula for y_1 is

 $y_1 = y_0 + \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \dots$
 $y' = x^2y - 1$
 $y'' = 2x^2y - 1$
 $y'' = 2xy + x^2y'$
 $y''' = 2y + 2xy' + 2xy' + x^2y'' \Rightarrow y_0''' = 2$
 $y''' = 2y' + 4xy'' + 4y' + x^2y''' + 2xy'' + 2xy'' + 2xy''' + 2xy'''$
 $y''' = 2y' + 4xy'' + 4y' + x^2y''' + 2xy''' + 2xy'' + 2xy$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

UNIT-V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Alternate Method:

$$y(x) = y_0 + \frac{(x - x_0)}{1!} y_0 + \frac{(x - x_0)^2}{2!} y_0 + \frac{(x - x_0)^3}{3!} y_0 + \frac{(x - x_0)^3}{4!} y_0 + \frac{(x - x$$

$$y(0.1) = 1 - 0.1 + (0.1)^{2} + 2 \frac{(0.1)^{3}}{3!} + (0.1)^{4} (-6)$$

$$- 0.900305$$

3) Solve
$$y'=x+y$$
; $y(0)=1$ by Taylor's sories method.
Final the values y at $x=0.1$ and $x=0.2$.
Solvi $y'=x+y$

 $n_0=0$; $y_0=1-h=0.1$ Taylor series is

$$y(x) = y_0 + (n - n_0) y_0 + (\frac{n - n_0}{2!})^2 y_0 + (\frac{n - n_0}{3!})^3 y_0 + \dots$$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

$$y'=n+y \implies y_0'=1$$

 $y''=1+y1 \implies y''=2$
 $y'''=y'' \implies y'''=2$
 $y'''=y''' \implies y'''=2$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

UNIT-V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Using Taylor method, compute y(0.2) & y(0.4)Correct to 4 decimal places yn. y'=1-2ny and y(0)=0. Soln: $0.2 \rightarrow 0.194752003$ $0.4 \rightarrow 0.359883723$

JAYLOR SERIES METHOD FOR SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS

Consider the eqn of the type $\frac{dy}{dn} = \frac{1}{1}(x,y,z)$, $\frac{dz}{dn} = \frac{1}{1}(x,y,z)$, $\frac{dz}{dn} = \frac{1}{1}(x,y,z)$ with initial conclitions $y(n_0) = y_0$, $\frac{dz}{dn} = \frac{1}{2}(n_0) = \frac{1}{2}(n_0)$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

$$y' = 3 - x^{2} \implies y_{0}' = 3_{0} - x_{0}^{2} = 1 \quad 3' = x + y \implies 3_{0}' = x_{0} + y_{0} = 1$$

$$y'' = 3' - x^{2} \implies y_{0}'' = 3_{0}' - x_{0} = 1 \quad 3'' = 1 + y' \implies 3_{0}'' = 1 + y_{0}' = x$$

$$1''' = 3'' - x \implies y_{0}''' = 3_{0}'' - x = 0 \quad 3''' = y'' \implies 3_{0}''' = y_{0}''' = 1$$

$$y''' = 3''' \implies y_{0}''' = 3_{0}''' = 1 \quad 3^{1/2} = y''' \implies 3_{0}''' = y_{0}''' = 0$$
By Taylor Souchs for y_{1} and y_{2} we have.
$$y_{1} = y(0 \cdot 1) = y_{0} + hy_{0}' + \frac{h^{2}}{2!}y_{0}'' + \frac{h^{3}}{3!}y_{0}''' + \dots$$

$$= 1 + (0 \cdot 1)(1) + \frac{(0 \cdot 1)^{2}}{2!}(1) + \frac{(0 \cdot 1)^{3}}{3!}(0) + \frac{(0 \cdot 1)^{4}}{4!}(1) + \dots$$

$$= 1 \cdot 1050$$

$$3_{1} = 3_{1}(0 \cdot 1) = 3_{0} + hy_{0}' + \frac{h^{2}}{2!}y_{0}'' + \frac{h^{3}}{3!}y_{0}''' + \dots$$

$$= 1 + (0 \cdot 1)(1) + \frac{(0 \cdot 1)^{2}}{2!}(2) + \frac{(0 \cdot 1)^{3}}{3!}(1) + \frac{(0 \cdot 1)^{4}}{4!}(0) + \dots$$

$$= 1 \cdot 1101$$

Find
$$y(0.3)$$
 & 3 (0.3) given $\frac{dz}{dn} = -ny$, $\frac{dy}{dn} = 1+23$ with $y(0) = 0$ & 3(0)=1
Seln Here $26 = 0$, $y_0 = 0$, $36 = 1$ & $\frac{1}{2} = 0.3$

(An Autonomous Institution)
Coimbatore— 35

DEPARTMENT OF MATHEMATICS

By Taylor Scales for y, and z, we have.

$$y_1 = y(0.1) = y_0 + hy_0' + \frac{h^2}{2!}y_0'' + \frac{h^3}{3!}y_0''' + \dots$$

$$= 1 + (0.1)(1) + \frac{(0.1)^2}{2!}(1) + \frac{(0.1)^3}{3!}(0) + \frac{(0.1)^4}{4!}(1) + \dots$$

$$= 1 \cdot 1050$$

$$3_1 = 3(0.1) = 3_0 + h_30' + \frac{h^2}{2!}3_0'' + \frac{h^3}{3!}3_0''' + \dots$$

$$= 1 + (0.1)(1) + \frac{(0.1)^2}{2!}(2) + \frac{(0.1)^3}{3!}(1) + \frac{(0.1)^4}{4!}(0) + \dots$$

$$= 1 \cdot 1101$$

$$3_1 + \frac{(0.1)^4}{4!}(0) + \frac{(0.1)^4}{4!}(0) + \dots$$

$$= 1 \cdot 1101$$

$$y_1(0) = 0 + 3(0) = 1$$

$$y_2(0) = 0 + 3(0) = 1$$

$$y_3(0) = 0 + 3(0) = 1$$

$$y_4(0) = 0 + 3(0) = 1$$

$$y_5(0) = 0 + 3(0) = 1$$

$$y_6(0) = 0 + 3(0) = 1$$