

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

<u>UNIT II</u>

Composite Transformation in 2-D graphics

- 1. Translation
 - 2. Scaling
- 3. Rotation
- 4. Reflection
- 5. Shearing of a 2-D object

Composite Transformation :

As the name suggests itself Composition, here we combine two or more transformations into one single transformation that is equivalent to the transformations that are performed one after one over a 2-D object.

Example :

Consider we have a 2-D object on which we first apply transformation **T1 (2-D matrix condition**) and then we apply transformation **T2(2-D matrix condition**) over the 2-D object and the object get transformed, the very equivalent effect over the 2-D object we can obtain by multiplying **T1 & T2 (2-D matrix conditions**) with each other and then applying the **T12 (resultant of T1 X T2)** with the coordinates of the 2-D image to get the transformed final image.

Problem :

Consider we have a square O(0, 0), B(4, 0), C(4, 4), D(0, 4) on which we first apply T1(scaling transformation) given scaling factor is Sx=Sy=0.5 and then we apply T2(rotation transformation in clockwise direction) it by 90*(angle), in last we perform T3(reflection transformation about origin).

Ans : The square O, B, C, D looks like :

Square_given(Fig.1)

UNIT II

First, we perform scaling transformation over a 2-D object :

Representation of scaling condition :

[x'y'] = [Sx00Sx] * [xy][x'y'] = [Sx00Sx] * [xy]

For coordinate O(0, 0) : O[xy]=[0.5000.5]*[00]O[x'y']=[00] *O*[xy]=[0.5000.5]*[00]*O*x'y'=[00]

For coordinate B(4, 0) : B[xy]=[0.5000.5]*[40]B[x'y']=[20] *B*[xy]=[0.5000.5]*[40]*B*x'y'=[20]

For coordinate C(4, 4) : C[xy]=[0.5000.5]*[44]C[x'y']=[22] *C*[xy]=[0.5000.5]*[44]*C*x'y'=[22]

For coordinate D(0, 4): D[xy]=[0.5000.5]*[04]D[x'y']=[02] D[xy]=[0.5000.5]*[04]Dx'y'=[02]

2-D object after scaling :

*Now, we'll perform rotation transformation in clockwise-direction on Fig.2 by 900:

The condition of rotation transformation of 2-D object about origin is :

 $[x'y'] = [\cos\theta \sin\theta - \sin\theta \cos\theta] * [xy] \cos\theta = 0 \sin\theta = 1 [x'y'] = [\cos\theta - \sin\theta \sin\theta \cos\theta] * [xy] \cos\theta = 0 \sin\theta = 1$

For coordinate O(0, 0) : O[x'y']=[01-10]*[00]O[x'y']=[00] *O*[x'y']=[0-110]*[00]*O*x'y'=[00]

For coordinate B(2, 0) : B[x'y']=[01-10]*[20]B[x'y']=[0-2] B[x'y']=[0-110]*[20]Bx'y'=[0-2]

For coordinate C(2, 2) : C[x'y']=[01-10]*[22]C[x'y']=[2-2] C[x'y']=[0-110]*[22]Cx'y'=[2-2]

For coordinate D(0, 2): D[x'y']=[01-10]*[02]D[x'y']=[20] D[x'y']=[0-110]*[02]Dx'y'=[20]

2-D object after rotating about origin by 90* angle :

*Now, we'll perform third last operation on Fig.3, by reflecting it about origin :

The condition of reflecting an object about origin is

[x'y'] = [-100-1]*[xy][x'y'] = [-100-1]*[xy]

For coordinate O(0, 0): O[x'y']=[-100-1]*[00]O[x'y']=[00] O[x'y']=[-100-1]*[00]Ox'y'=[00]

For coordinate B'(0, 0) : B'[x'y']=[0-1-10]*[02]B'[x'y']=[-20] B'[x'y']=[0-1-10]*[02]B'x'y'=[-20]

For coordinate C'(0, 0) : C'[x'y']=[-100-1]*[2-2]C'[x'y']=[-22] C'[x'y']=[-100-1]*[2-2]C'x'y'=[-22]

For coordinate D'(0, 0): D'[x'y'] = [-100-1]*[0-2]D'[x'y'] = [02] D'[x'y'] = [-100-1]*[0-2]D'x'y' = [02]

The final 2-D object after reflecting about origin, we get :

Fig.4

Note : The above finale result of Fig.4, that we get after applying all transformation one after one

UNIT II 19CSE308 – COMPUTER GRAPHICS AND VISUALIZATION

in a serial manner. We could also get the same result by combining all the transformation 2-D matrix conditions together and multiplying each other and get a resultant of multiplication(R). Then, applying that 2D-resultant matrix(R) at each coordinate of the given square(above). So, you will get the same result as you have in **Fig.4**.

Solution using Composite transformation :

*First we multiplied 2-D matrix conditions of **Scaling transformation** with **Rotation transformation :**

[R1] = [0.5000.5] * [01-10] [R1] = [00.5-0.50] [R1] = [0.5000.5] * [0-110] [R1] = [0-0.50.50]

*Now, we multiplied Resultant 2-D matrix(R1) with the third last given Reflecting condition of transformation(R2) to get Resultant(R) :

[R]=[00.5-0.50]*[-100-1][R]=[0-0.50.50] [R]=[0-0.50.50]*[-100-1][R]=[00.5-0.50]Now, we'll applied the Resultant(R) of 2d-matrix at each coordinate of the given object (square) to get the final transformed or modified object.

First transformed coordinate O(0, 0) is :

O[x'y'] = [0-0.50.50] * [00] O[x'y'] = [00] O[x'y'] = [00.5-0.50] * [00] Ox'y' = [00]

Second, transformed coordinate B'(4, 0) is :

B'[x'y'] = [0-0.50.50] * [40]B'[x'y'] = [02] B'[x'y'] = [00.5-0.50] * [40]B'x'y' = [02]

Third transformed coordinate C'(4, 4) is :

C'[x'y'] = [0-0.50.50] * [44]C'[x'y'] = [-22] C'[x'y'] = [00.5-0.50] * [44]C'x'y' = [-22]

Fourth transformed coordinate D'(0, 4) is :

D'[x'y'] = [0-0.50.50] * [04] D'[x'y'] = [-20] D'[x'y'] = [00.5-0.50] * [04] D'x'y' = [-20]

The final result of the transformed object that you get would be same as above :

