

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

Puzzle: The Disappearing Population

A small island has a population of bacteria that follows the logistic growth model:

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

where:

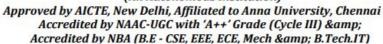
- P(t) is the population at time t,
- r is the intrinsic growth rate,
- K is the carrying capacity of the environment.

Initially, there were 100 bacteria, and the carrying capacity of the island is 1000 bacteria. Suppose the intrinsic growth rate is 0.5 per hour.

♦ Question: How long does it take for the population to reach 500 bacteria?

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)



Let's solve the logistic growth puzzle step by step.

Given Logistic Growth Model:

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

where:

- r=0.5 per hour (growth rate)
- K=1000 (carrying capacity)
- P(0) = 100 (initial population)
- We need to find the time t when P(t) = 500.

Step 1: Solution of the Logistic Equation

The standard solution to the logistic equation is:

$$P(t) = \frac{K}{1 + \left(\frac{K - P_0}{P_0}\right)e^{-rt}}$$

Substituting the given values:

$$P(t) = \frac{1000}{1 + \left(\frac{1000 - 100}{100}\right)e^{-0.5t}}$$

$$P(t) = \frac{1000}{1 + 9e^{-0.5t}}$$

Step 2: Solve for t when $P(t)=500\,$

$$500 = \frac{1000}{1 + 9e^{-0.5t}}$$

Multiply both sides by $1+9e^{-0.5t}$:

$$500(1+9e^{-0.5t})=1000$$

$$1 + 9e^{-0.5t} = 2$$

$$9e^{-0.5t} = 1$$

Divide by 9:

4

Automobile

$$e^{-0.5t} = \frac{1}{9}$$

Take the natural logarithm on both sides:

$$-0.5t = \ln\left(\frac{1}{9}\right)$$

Since $\ln(1/9) = -\ln 9$, we get:

$$-0.5t = -\ln 9$$

$$t = \frac{\ln 9}{0.5}$$

$$t = 2 \ln 3$$

Final Answer

Approximating $\ln 3 \approx 1.0986$, we get:

$$t \approx 2 \times 1.0986 = 2.197 \text{ hours}$$

So, it takes about 2.2 hours for the bacteria population to reach 500.