

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Company (B.E. - CSE, EEE, ECE, Mech & Company) & Company (B.Tech.IT)

Puzzle: The Mysterious Holomorphic Function

A mysterious function f(z) is holomorphic in the entire complex plane and satisfies the condition:

$$\left(\frac{d}{dz}\right)^2 f(z) = f(z)$$

Additionally, it is given that:

$$f(0) = 2$$
, $f'(0) = 3$.

◆ Question: Can you determine the explicit form of f(z)?

Given Differential Equation:

$$\frac{d^2}{dz^2}f(z) = f(z)$$

with initial conditions:

$$f(0) = 2, \quad f'(0) = 3.$$

Step 1: Solve the Differential Equation

This is a **linear homogeneous differential equation** with constant coefficients. The characteristic equation is:

$$r^2 - 1 = 0$$

Solving for r:

$$r=\pm 1.$$

Thus, the general solution is:

Ack anothing

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

$$f(z) = Ae^z + Be^{-z}.$$

Step 2: Apply Initial Conditions

Condition 1: f(0) = 2

Substituting z=0 into the general solution:

 $Ae^0 + Be^0 = A + B = 2.$

Condition 2: f'(0) = 3

First, differentiate f(z):

 $f'(z) = Ae^z - Be^{-z}.$

Substituting z=0:

$$Ae^0 - Be^0 = A - B = 3.$$

Step 3: Solve for A and B

We have the system of equations:

1.
$$A + B = 2$$

2.
$$A - B = 3$$

Adding both equations:

$$2A=5 \Rightarrow A=\frac{5}{2}.$$

Subtracting the second equation from the first:

$$2B = -1 \quad \Rightarrow \quad B = \frac{1}{2}.$$

Final Answer:

$$f(z) = \frac{5}{2}e^z + \frac{1}{2}e^{-z}.$$

Alternatively, using hyperbolic functions:

$$f(z) = 3\cosh z + \sinh z.$$

Thus, the explicit function satisfying the given ODE and initial conditions is:

$$f(z) = 3\cos^4 z + \sinh z.$$