
Transformations in OpenGL

• Translate
• Rotate
• Scale

• Push Matrix
• Pop Matrix

OpenGL Functions
• Transformations in OpenGL are not drawing

commands. They are retained as part of the
graphics state.

• When drawing commands are issued, the
current transformation is applied to the points
drawn.

• Transformations are cumulative.

Translation

Offset (tx, ty, tz) is applied to all subsequent
coordinates. Effectively moves the origin of
coordinate system.

• x' = x + tx , y' = y + ty, z' = z + tz
• OpenGL function is glTranslate
• glTranslatef(tx, ty, tz);

Rotation
Expressed as rotation through angle θ about an axis

direction (x,y,z) .
• OpenGL function – glRotatef (θ, x,y,z). So

 glRotatef(30.0, 0.0, 1.0, 0.0)
rotates by 30° about y-axis.

• Note carefully:
– glRotate wants angles in degrees.
– C math library (sin, cos etc.) wants angles in radians.
– degs = rads * 180/π; rads = degs * π / 180

• Positive angle? Right hand rule: if the thumb points
along the vector of rotation, a positive angle has the
fingers curling towards the palm.

Rotation (cont.)

• Frequently the axis is one of the coordinate
axes. Common terms:
– rotation about y-axis is heading/yaw
– rotation about x-axis is pitch/elevation
– rotation about z-axis is roll/bank

• 3-d rotation is an extremely difficult topic! There are
several different mathematical formulations. Rotations
do not commute – the order that transformations are
done matters.

Scaling
• Multiply subsequent coordinates by scale factors sx,

sy, sz. (Note: these are not a point, not a vector, just 3
numbers)
 x' = sx * x , y' = sy * y, z' = sz * z

• Often sx = sy = sz for a uniform scaling effect. If the
factors are different, the scaling is called anamorphic.

• OpenGL function – glScale For example,
 glScalef(0.5,0.5,0.5);
would cause all objects drawn subsequently to be half
as big.

Order of transformations
• Transformations are cumulative and the order

matters:
– The sequence

1. Scale 2, 2, 2
2. Translate by (10, 0, 0)
will scale subsequent objects by factor of 2 about an origin that is 20

along the x-axis
– The sequence

1. Rotate 90.0 deg about (0, 1, 0)
2. Translate by (10, 0, 0)
will set an origin 10 along the –ve z-axis

• For each object, the usual sequence is:
1. Translate (move the origin to the right location)
2. Rotate (orient the coordinate axes right)
3. Scale (get the object to the right size)

Matrix representation
• Every 3-d point can be written as a 4-element vector

and every 3-d transformation as a 4x4 matrix. (Yes,
FOUR)

• For a point P (x,y,z), a fourth ‘dummy’ coordinate is
appended. Internally the graphics card will treat the
point as having 4 elements (x,y,z,1). These are called
the homogeneous coordinates of P. (More on this
later.)

• The identity matrix leaves any original vector
unchanged:

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

0100

0010

0001

1

z

y

x

z

y

x

Matrix representation
• If points are represented by column vectors, a translation is

represented by a matrix with the offset values in the 4th column:

•A rotation matrix uses the top left 3x3 area. A scaling matrix
puts the scale factors on the diagonal.
•A matrix can represent any 3-d transformation, including
some we haven’t covered such as shearing and perspective
projection.

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

100

010

001

1

'

'

'

z

y

x

tz

ty

tx

z

y

x

The OpenGL pipeline

V
ertex D

ata

Model
 View

 Matrix

Transform
ed

 eye co-ordinates

Direction of data movement

Projection
 Matrix

Perspective division

 C
lip co-ordinates

 N
orm

alised device co-ordinates
View port
Transform

 matrix
(hidden)

R
asterisation + texture m

ap

Matrices and Graphics State

• Each of the transformations above (Model View Matrix,
Projection Matrix etc.) is maintained by OpenGL as part of the
graphics state. (Current Transformation Matrix CTM)

• glLoadIdentity sets the CTM to the identity matrix, for a
“fresh start”.

• When glRotate or similar command is issued, the
appropriate transformation matrix is updated.

• Note carefully that the rotation matrix doesn’t overwrite the old
CTM. It updates CTM by matrix multiplication.

• In fact the CTM is so important that OpenGL can keep several
of them in a stack. By popping the stack, you can recover an
old and possibly still-useful CTM.

Nested Transformations
• The sequence

 translate 1.5 0 0
 cube
 translate 8.5 0 0
 cube
will draw two cubes with x centres 1.5 and 10.0 respectively.

• We could create the same image with the sequence
 save state

translate 1.5 0 0
cube

 restore state
 save state

translate 10.0 0 0
cube

 restore state
• Here both cubes have an absolute translation and the order in which the two

cubes are drawn does not matter.

Push and Pop
• glMatrixMode(GL_MODELVIEW)
• glMatrixMode(GL_PROJECTION)
• glMatrixMode(GL_TEXTURE)

• glPushMatrix();
– Save the state.
– Push a copy of the CTM onto the stack.
– The CTM itself is unchanged.

• glPopMatrix();
– Restore the state, as it was at the last Push.
– Overwrite the CTM with the matrix at the top of the stack.

• glLoadIdentity();
– Overwrite the CTM with the identity matrix.

Local coordinate system
• The standard way to construct a complex 3D model is to define

each individual part in a local coordinate system. This has
whatever origin, and whatever unit, is most convenient.

• Typically we will draw the part centred at the origin, and
aligned with the coordinate axes.

• Each part is then transformed relative to some parent before
being rendered. Groups of parts may themselves have a parent,
and so on up to the final world coordinate system.

• There are many changes of CTM, so many that your head will
spin for a couple of weeks. Everyone has to get skilled at this –
it’s the source of the power and flexibility and (believe it or not)
ease of use of a graphics system.

Coordinate
systems

So the trick to understanding world co
ordinates is to know what the reference
point is (and it relation to the origin)

The world coordinate system is the one in
which the entire 3D model is defined.

The origin is a point
of reference

0,0,0
X

Y

-Z

Distance from corner
X,Y and Z planes

Local
Coordinate

system

Global (or
world)

Coordinate
system

Coordinate
systems

So the trick to understanding world co
ordinates is to know what the reference
point is (and it relation to the origin)

The world coordinate system is the one in
which the entire 3D model is defined.

For drawing the
door this is
point 0,0,0

0,0,0
X

Y

-Z

Scene Graphs
• We define a rivet in a local coordinate system, and

then translate and rotate each rivet within the
coordinate system of a bracket:

Scene Graphs (cont.)
• Each bracket is in turn translated and rotated

within the coordinate system of a subassembly:

Representation as Graph
• This hierarchical 3D model can be represented as a

scene graph:

DAG, Directed Acyclic Graph
• Each node in the scene graph

inherits the CTM from its
parent. Descending the graph
pushes the matrix stack,
ascending pops.

• Above, the scene graph was
shown as a rooted tree. But a
scene graph is better
represented as a DAG, directed
acyclic graph, in which each
node can have more than one
predecessor. This picture more
accurately reflects the structure
of our function calls.

DAG, Directed Acyclic Graph

• May be implicit in Code
– In the structure of your calls to drawing functions

e.g. drawCar(), drawAxle(), drawWheel(),
drawCylinder()

• Can be in data
– Such as a mesh (eg .3DS format)

• Can be in a human readable language
– VRML

VRML
A Scene Graph Language

• Virtual Reality Modelling Language
– I think Virtual Reality Mark up Language which is

sometimes seen is wrong
• It is a scene graph language
• Designed by SGI and is closely related to OpenGL

(many features in common)
• Despite early successes VRML has not really caught

on
• Some companies are trying to future proof their

character meshes by storing them in VRML
• Can be useful to us because it is human readable an

relatively easy to understand

