

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accredited by NAAC with 'A++' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 19BMB304 & Biomedical Image Processing

III Year : VI Semester

Unit I – DIGITAL IMAGE FUNDAMENTALS Topic : Digital Image Processing – Relationships Between Pixels

- Neighborhood
- Adjacency
- Connectivity
- Paths

- Neighbors of a pixel p at coordinates (x,y)
- 4-neighbors of p, denoted by N₄(p): (x-1, y), (x+1, y), (x,y-1), and (x, y+1).
- 4 diagonal neighbors of p, denoted by N_D(p): (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- > 8 neighbors of p, denoted $N_8(p)$ $N_8(p) = N_4(p) \cup N_D(p)$

• Adjacency

Let V be the set of intensity values

- 4-adjacency: Two pixels p and q with values from V are 4adjacent if q is in the set N₄(p).
- 8-adjacency: Two pixels p and q with values from V are 8adjacent if q is in the set N₈(p).

• Adjacency

Let V be the set of intensity values

m-adjacency: Two pixels p and q with values from V are madjacent if

(i) q is in the set $N_4(p)$, or

(ii) q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(p)$ has no pixels whose values are from V.

- Path
- A (digital) path (or curve) from pixel p with coordinates (x₀, y₀) to pixel q with coordinates (x_n, y_n) is a sequence of distinct pixels with coordinates

 $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$

Where (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$.

- ➢ Here *n* is the *length* of the path.
- > If $(x_0, y_0) = (x_n, y_n)$, the path is *closed* path.

We can define 4-, 8-, and m-paths based on the type of adjacency used.

8-adjacent

The 8-path from (1,3) to (3,3): (i) (1,3), (1,2), (2,2), (3,3) (ii) (1,3), (2,2), (3,3)

The m-path from (1,3) to (3,3): (1,3), (1,2), (2,2), (3,3)

• Connected in S

Let S represent a subset of pixels in an image. Two pixels p with coordinates (x_0, y_0) and q with coordinates (x_n, y_n) are said to be **connected in S** if there exists a path

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where
$$\forall i, 0 \le i \le n, (x_i, y_i) \in S$$

Let S represent a subset of pixels in an image

- For every pixel p in S, the set of pixels in S that are connected to p is called a ۲ *connected component* of S.
- If S has only one connected component, then S is called *Connected Set*. •
- We call R a **region** of the image if R is a connected set
- Two regions, R_i and R_i are said to be *adjacent* if their union forms a connected set.
- Regions that are not to be adjacent are said to be *disjoint*.

1	1	0	0	0	0	0
1	1	0	0	1	1	0
1	1	0	0	0	1	0
1	1	0	0	0	0	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0

a

1	1	0	0	0	0	0
1	1	0	0	2	2	0
1	1	0	0	0	2	0
1	1	0	0	0	0	0
0	0	0	0	0	3	0
0	0	0	0	0	0	0

L = bwlabel(BW, 4)

BW = imread('text.png'); imshow(BW); CC = bwconncomp(BW);numPixels = cellfun(@numel,CC.PixelldxList); [biggest,idx] = max(numPixels); $BW(CC.PixeIIdxList{idx}) = 0;$ figure, imshow(BW);

- Boundary (or border)
- The boundary of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.
- Foreground and background
- An image contains K disjoint regions, R_k, k = 1, 2, ..., K. Let R_u denote the union of all the K regions, and let (R_u)^c denote its complement.
 All the points in R_u is called **foreground**;
 All the points in (R_u)^c is called **background**.

Question 1

In the following arrangement of pixels, are the two regions
 1s) adjacent? (if 8-adjacency is used)

Question 2

In the following arrangement of pixels, are the two paradjacent? (if 4-adjacency is used)

 In the following arrangement of pixels, the circled point is part of the boundary of the 1-valued pixels if 8-adjacency is used, true or false?

Thank You

