


INTERRUPTS

e An interrupt is an external or internal event that
interrupts the microcontroller to inform it that a device
needs its service

e A single microcontroller can serve several devices by two
ways:

1. Interrupt
2. Polling

2051 Microcontroller 79



Interrupt Vs Polling

1. Interrupts

— Whenever any device needs its service, the device notifies the
microcontroller by sending it an interrupt signal.

— Upon receiving an interrupt signal, the microcontroller
interrupts whatever it is doing and serves the device.

— The program which is associated with the interrupt is called the
interrupt service routine (ISR) or interrupt handler.

2. Polling

— The microcontroller continuously monitors the status of a
given device.

— When the conditions met, it performs the service.

— After that, it moves on to monitor the next device until every

one is serviced.
{051 Microcontroller {0



Interrupt Vs Polling

e The polling method is not efficient, since it wastes much of
the microcontroller’s time by polling devices that do not
need service.

e The advantage of interrupts is that the microcontroller can
serve many devices (not all at the same time).

e Each devices can get the attention of the microcontroller
based on the assigned priority.

e For the polling method, it is not possible to assign priority
since it checks all devices in a round-robin fashion.

e The microcontroller can also ignore (mask) a device request
for service in Interrupt.

Q051 Microcontroller {1



Program execution without intrrupts :

Time

=

Main Program

Program execution with intrrupts :

ISR

Main

Time
L

ISR

ISR

Main

Main

ISR : Intrrupt Service Routin

e




Six Interrupts in 8051

Six interrupts are allocated as follows:

1. Reset — power-up reset.

2. Two interrupts are set aside for the timers.
— one for timer 0 and one for timer 1

3. Two interrupts are set aside for hardware external

interrupts.

— P3.2 and P3.3 are for the external hardware interrupts INTO
(or EX1), and INT1 (or EX2)

4.Serial communication has a single interrupt that
belongs to both receive and transfer.

Q051 Microcontroller {3



What events can trigger Interrupts?

e We can configure the 8051 so that any of the following
events will cause an interrupt:

— Timer 0 Overflow.

— Timer 1 Overflow.

— Reception/Transmission of Serial Character.
— External Event O.

— External Event 1.

e We can configure the 8051 so that when Timer O
Overflows or when a character is sent/received, the

appropriate interrupt handler routines are called.

051 Microcontroller 4



8051 Interrupt Vectors

INTERRUPT VECTORS

When the original 8051 and 8031 were introduced, only 5 interrupts were provided.

Interrupt Interrupt Description
Number Vector Address

0003h EXTERNAL O
DO0Bh TIMER/COUNTER O
0013h EXTERNAL 1
001Bh TIMER/COUNTER 1
0023h SERIAL PORT

{051 Mlicrocontroller

g5



8051 Interrupt related Registers

e The various registers associated with the use of
interrupts are:

— TCON - Edge and Type bits for External Interrupts 0/1
— SCON - Rl and Tl interrupt flags for RS232
— |E - Enable interrupt sources

— IP - Specify priority of interrupts

Q051 Microcontroller L6



Enabling and Disabling an Interrupt

e Upon reset, all interrupts are disabled (masked),
meaning that none will be responded to by the
microcontroller if they are activated.

e The interrupts must be enabled by software in order for
the microcontroller to respond to them.

e There is a register called IE (interrupt enable) that is
responsible for enabling (unmasking) and disabling
(masking) the interrupts.

Q051 Microcontroller &F



Interrupt Enable (IE) Register

II i

e EA :Global enable/disable.

e --- :Reserved for additional interrupt hardware.
VI ° ES :Enable Serial port interrupt.

or . ) . .
SETB ET1 ET1 : Enable Timer 1 control bit.

e EX1:Enable External 1 interrupt.

e ETO : Enable Timer 0 control bit.

e EXO : Enable External O interrupt.

{051 Mlicrocontroller gL



Enabling and Disabling an Interrupt

e Example: Show the instructions to (a) enable the serial interrupt,
timer O interrupt, and external hardware interrupt 1 and (b)
disable (mask) the timer O interrupt, then (c) show how to disable
all the interrupts with a single instruction.

e Solution:

— (a) MOV IE,#10010110B ;enable serial, timer 0, EX1

e Another way to perform the same manipulation is:
— SETB IE.7 ;EA=1, global enable
— SETB IE.4 ;enable serial interrupt

— SETB IE.1 ;enable Timer O interrupt
— SETB IE.2 ;enable EX1

— (b) CLR IE.1 ;mask (disable) timer O interrupt only

— (c) CLR IE.7 ;disable all interrupts

{051 Microcontroller £9



Interrupt Priority

e When the 8051 is powered up, the priorities are assigned according
to the following.

e |n reality, the priority scheme is nothing but an internal polling
sequence in which the 8051 polls the interrupts in the sequence
listed and responds accordingly.

{051 Microcontroller

Highest To Lowest Priority

External Interrupt O
Timer Interrupt O
External Interrupt 1
Timer Interrupt 1

Serial Communication

(INTO)
(TFO)
(INT1)
(TF1)

(RI + TI)

90



Interrupt Priority

e We can alter the sequence of interrupt priority by assigning a
higher priority to any one of the interrupts by programming a
register called IP (interrupt priority).

e To give a higher priority to any of the interrupts, we make the
corresponding bit in the IP register high.

{051 Microcontroller

91



Interrupt Priority (IP) Register

-
T A A A A

Serial Port

INT O Pin

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

{051 Mlicrocontroller 92



