
8051

Interrupts

8051 Microcontroller 78

INTERRUPTS

• An interrupt is an external or internal event that
interrupts the microcontroller to inform it that a device
needs its service

• A single microcontroller can serve several devices by two
ways:

1. Interrupt

2. Polling

8051 Microcontroller 79

Interrupt Vs Polling

1. Interrupts

– Whenever any device needs its service, the device notifies the
microcontroller by sending it an interrupt signal.

– Upon receiving an interrupt signal, the microcontroller
interrupts whatever it is doing and serves the device.

– The program which is associated with the interrupt is called the
interrupt service routine (ISR) or interrupt handler.

2. Polling

– The microcontroller continuously monitors the status of a
given device.

– When the conditions met, it performs the service.

– After that, it moves on to monitor the next device until every
one is serviced.

8051 Microcontroller 80

Interrupt Vs Polling

• The polling method is not efficient, since it wastes much of
the microcontroller’s time by polling devices that do not
need service.

• The advantage of interrupts is that the microcontroller can
serve many devices (not all at the same time).

• Each devices can get the attention of the microcontroller
based on the assigned priority.

• For the polling method, it is not possible to assign priority
since it checks all devices in a round-robin fashion.

• The microcontroller can also ignore (mask) a device request
for service in Interrupt.

8051 Microcontroller 81

Steps in Executing an Interrupt
1. It finishes the instruction it is executing and saves the address of

the next instruction (PC) on the stack.

2. It also saves the current status of all the interrupts internally (i.e:
not on the stack).

3. It jumps to a fixed location in memory, called the interrupt
vector table, that holds the address of the ISR.

4. The microcontroller gets the address of the ISR from the
interrupt vector table and jumps to it.

5. It starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine which is RETI
(return from interrupt).

6. Upon executing the RETI instruction, the microcontroller returns
to the place where it was interrupted.

8051 Microcontroller 82

Six Interrupts in 8051

Six interrupts are allocated as follows:

1. Reset – power-up reset.

2. Two interrupts are set aside for the timers.
– one for timer 0 and one for timer 1

3. Two interrupts are set aside for hardware external
interrupts.
– P3.2 and P3.3 are for the external hardware interrupts INT0

(or EX1), and INT1 (or EX2)

4. Serial communication has a single interrupt that
belongs to both receive and transfer.

8051 Microcontroller 83

What events can trigger Interrupts?

• We can configure the 8051 so that any of the following
events will cause an interrupt:

– Timer 0 Overflow.

– Timer 1 Overflow.

– Reception/Transmission of Serial Character.

– External Event 0.

– External Event 1.

• We can configure the 8051 so that when Timer 0
Overflows or when a character is sent/received, the
appropriate interrupt handler routines are called.

8051 Microcontroller 84

8051 Interrupt Vectors

8051 Microcontroller 85

8051 Interrupt related Registers

• The various registers associated with the use of
interrupts are:

– TCON - Edge and Type bits for External Interrupts 0/1

– SCON - RI and TI interrupt flags for RS232

– IE - Enable interrupt sources

– IP - Specify priority of interrupts

8051 Microcontroller 86

Enabling and Disabling an Interrupt

• Upon reset, all interrupts are disabled (masked),
meaning that none will be responded to by the
microcontroller if they are activated.

• The interrupts must be enabled by software in order for
the microcontroller to respond to them.

• There is a register called IE (interrupt enable) that is
responsible for enabling (unmasking) and disabling
(masking) the interrupts.

8051 Microcontroller 87

Interrupt Enable (IE) Register

8051 Microcontroller 88

• EA : Global enable/disable.

• --- : Reserved for additional interrupt hardware.

• ES : Enable Serial port interrupt.

• ET1 : Enable Timer 1 control bit.

• EX1 : Enable External 1 interrupt.

• ET0 : Enable Timer 0 control bit.

• EX0 : Enable External 0 interrupt.

MOV IE,#08h

or

SETB ET1

--

Enabling and Disabling an Interrupt
• Example: Show the instructions to (a) enable the serial interrupt,

timer 0 interrupt, and external hardware interrupt 1 and (b)
disable (mask) the timer 0 interrupt, then (c) show how to disable
all the interrupts with a single instruction.

• Solution:

– (a) MOV IE,#10010110B ;enable serial, timer 0, EX1

• Another way to perform the same manipulation is:
– SETB IE.7 ;EA=1, global enable

– SETB IE.4 ;enable serial interrupt

– SETB IE.1 ;enable Timer 0 interrupt
– SETB IE.2 ;enable EX1

– (b) CLR IE.1 ;mask (disable) timer 0 interrupt only

– (c) CLR IE.7 ;disable all interrupts
8051 Microcontroller 89

Interrupt Priority

• When the 8051 is powered up, the priorities are assigned according
to the following.

• In reality, the priority scheme is nothing but an internal polling
sequence in which the 8051 polls the interrupts in the sequence
listed and responds accordingly.

8051 Microcontroller 90

Interrupt Priority

• We can alter the sequence of interrupt priority by assigning a
higher priority to any one of the interrupts by programming a
register called IP (interrupt priority).

• To give a higher priority to any of the interrupts, we make the
corresponding bit in the IP register high.

8051 Microcontroller 91

Interrupt Priority (IP) Register

8051 Microcontroller 92

PS PT1 PX1 PT0 PX0Reserved

Serial Port

Timer 1 Pin

INT 1 Pin Timer 0 Pin

INT 0 Pin

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

