

#### SNS COLLEGE OF TECHNOLOGY



#### An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

#### 19ITT204 - MICROCONTROLLER AND EMBEDDED SYSTEMS

II YEAR/ IV SEMESTER

UNIT II PERIPHERAL INTERFACING

**TOPIC - 8255 PPI** 





# Parallel communication interface INTEL 8255







### 8255 PPI

- The 8255 chip is also called as Programmable Peripheral Interface.
- The Intel's 8255 is designed for use with Intel's 8-bit, 16-bit and higher capability microprocessors
- The 8255 is a 40 pin integrated circuit (IC), designed to perform a variety of interface functions in a computer environment.
- It is flexible and economical.











# Signals of 8085







### 8255 PIO/PPI

- It has 24 input/output lines which may be individually programmed.
- 2 groups of I/O pins are named as

Group A (Port-A & Port C Upper) Group B (Port-B & Port C Lower)

3 ports(each port has 8 bit)

Port A lines are identified by symbols PA0-PA7

Port B lines are identified by symbols PB0-PB7

Port C lines are identified by PC0-PC7, PC3-PC0

ie: PORT C UPPER(PC7-PC4), PORT C LOWER(PC3-PC0)





D0 - D7: data input/output lines for the device. All information read from and written to the 8255 occurs via these 8 data lines.

CS (Chip Select). If this line is a logical 0, the microprocessor can read and write to the 8255.

**RESET**: The 8255 is placed into its reset state if this input line is a logical 1





- RD: This is the input line driven by the microprocessor and should be low to indicate read operation to 8255.
- WR: This is an input line driven by the microprocessor. A low on this line indicates write operation.
- A1-A0: These are the address input lines and are driven by the microprocessor.





15

### Control Logic

- CS signal is the master Chip Select
- AO and A1 specify one of the two I/O Ports

| CS | <b>A1</b> | AO | Selected             |
|----|-----------|----|----------------------|
| 0  | 0         | 0  | Port A               |
| 0  | 0         | 1  | Port B               |
| 0  | 1         | 0  | Port C               |
| 0  | 1         | 1  | Control<br>Register  |
| 1  | ×         | ×  | 8255 is not selected |











# Block Diagram of 8255 (Architecture)

It has a 40 pins of 4 parts.

- 1. Data bus buffer
- 2. Read/Write control logic
- 3. Group A and Group B controls
- 4. Port A, B and C





## 1. Data bus buffer

This is a tristate bidirectional buffer used to interface the 8255 to system data bus. Data is transmitted or received by the buffer on execution of input or output instruction by the CPU.





# 2. Read/Write control logic

- This unit accepts control signals (RD, WR) and also inputs from address bus and issues commands to individual group of control blocks (Group A, Group B).
- It has the following pins.

CS, RD, WR, RESET, A1, A0





# 3. Group A and Group B controls

 These block receive control from the CPU and issues commands to their respective ports.

Group A - PA and PCU (PC7 -PC4)
Group B - PB and PCL (PC3 -PC0)

a) Port A: This has an 8 bit latched/buffered O/P and 8 bit input latch. It can be programmed in 3 modes - mode 0, mode 1, mode 2.





- b) Port B: It can be programmed in mode 0, mode1
- c) Port C: It can be programmed in mode 0











# Modes of Operation of 8255

- Bit Set/Reset(BSR) Mode
  - » Set/Reset bits in Port C
- I/O Mode
  - Mode 0 (Simple input/output)
  - Mode 1 (Handshake mode)
  - Mode 2 (Bidirectional Data Transfer)











| В3 | <b>B2</b> | <b>B1</b> | Bit/pin of port C<br>selected |
|----|-----------|-----------|-------------------------------|
| 0  | О         | О         | PC <sub>0</sub>               |
| 0  | О         | 1         | PC <sub>1</sub>               |
| 0  | 1         | O         | PC <sub>2</sub>               |
| 0  | 1         | 1         | PC <sub>3</sub>               |
| 1  | 0         | О         | PC <sub>4</sub>               |
| 1  | О         | 1         | PC <sub>5</sub>               |
| 1  | 1         | O         | PC <sub>6</sub>               |
| 1  | 1         | 1         | PC <sub>7</sub>               |

Concerned only with the 8-bits of Port C. Set or Reset by control word Ports A and B are not affected





# 2. I/O MODE a) Mode 0 (Simple Input or Output):

- Ports A and B are used as Simple I/O Ports
- Port C as two 4-bit ports
- Features
  - Outputs are latched
  - Inputs are not latched
  - Ports do not have handshake or interrupt capability











# b) Mode 1: (Input or Output with Handshake)

 Handshake signals are exchanged between MPU & Peripherals

#### Features

- Ports A and B are used as Simple I/O Ports
- Each port uses 3 lines from Port C as handshake signals
- Input & Output data are latched
- interrupt logic supported





#### c) Mode 2: Bidirectional Data Transfer

- Used primarily in applications such as data transfer between two computers
- Features
  - Ports A can be configured as the bidirectional Port
  - Port B in Mode 0 or Mode 1.
  - Port A uses 5 Signals from Port C as handshake signals for data transfer
  - Remaining 3 Signals from Port C Used as –
     Simple I/O or handshake for Port B





#### **THANK YOU**