

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accredited by NAAC with 'A++' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 19BMB304 & Biomedical Image Processing

III Year : VI Semester

Unit III : IMAGE RESTORATION AND SEGMENTATION Topic : Noise models

Order Statistics Filters

Spatial filters that are based on ordering the pixel values that make up the neighbourhood operated on by the filter

Useful spatial filters include

- Median filter
- Max and min filter
- Midpoint filter
- Alpha trimmed mean filter

Median Filter

Median Filter:

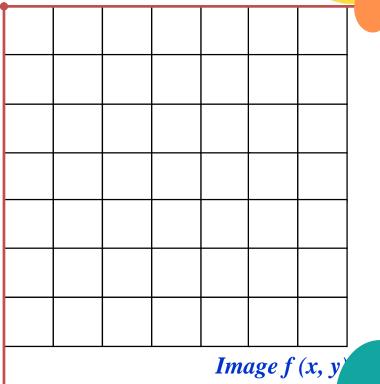
 $\hat{f}(x, y) = median_{(s,t)\in S_{xy}} \{g(s,t)\}$

Excellent at noise removal, without the smoothing effects that can occur with other smoothing filters Particularly good when salt and pepper noise

is present

Noise Corruption Example

Original Image


	Ī	

x

52	57	55	56	52	51
49	51	50	52	53	58
204	52	52	0	57	60
50	51	49	53	59	63
51	52	55	58	64	67
54	57	60	63	67	70
55	59	62	65	69	72
	49 204 50 51 54	49 51 204 52 50 51 51 52 54 57	49 51 50 204 52 52 50 51 49 51 52 55 51 52 55 54 57 60	49 51 50 52 204 52 52 0 50 51 49 53 51 52 55 58 54 57 60 63	49 51 50 52 53 204 52 52 0 57 50 51 49 53 59 51 52 55 58 64 54 57 60 63 67

Image f(x, y)

Filtered Image

19BMB304/Biomedical Image Processing/Dr Karthika A/AP/BME

y

Max and Min Filter

$$\hat{f}(x, y) = \max_{(s,t)\in S_{xy}} \{g(s,t)\}$$

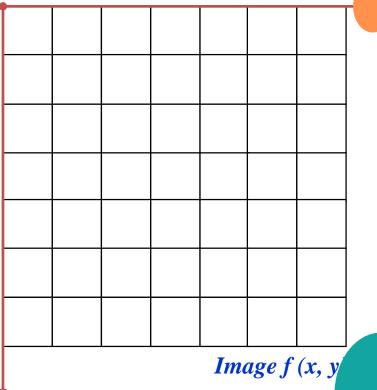
Min Filter:

$$\hat{f}(x,y) = \min_{(s,t)\in S_{xy}} \{g(s,t)\}$$

Max filter is good for pepper noise and min is good for salt noise

Noise Corruption Example

Original Image



x

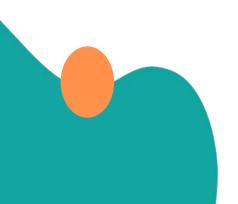
54	52	57	55	56	52	51
50	49	51	50	52	53	58
51	204	52	52	0	57	60
48	50	51	49	53	59	63
49	51	52	55	58	64	67
50	54	57	60	63	67	70
51	55	59	62	65	69	72

Image f(x, y)

Filtered Image

19BMB304/Biomedical Image Processing/Dr Karthika A/AP/BME

V



Midpoint Filter

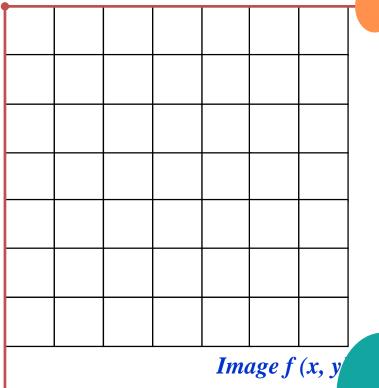
Midpoint Filter: $\hat{f}(x, y) = \frac{1}{2} \left[\max_{(s,t)\in S_{xy}} \{g(s,t)\} + \min_{(s,t)\in S_{xy}} \{g(s,t)\} \right]$

Good for random Gaussian and uniform noise

V

Noise Corruption Example

Original Image



x

54	52	57	55	56	52	51
50	49	51	50	52	53	58
51	204	52	52	0	57	60
48	50	51	49	53	59	63
49	51	52	55	58	64	67
50	54	57	60	63	67	70
51	55	59	62	65	69	72

Image f(x, y)

Filtered Image

y

Alpha-Trimmed Mean Filter:

$$\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(s,t)\in S_{xy}} g_r(s,t)$$

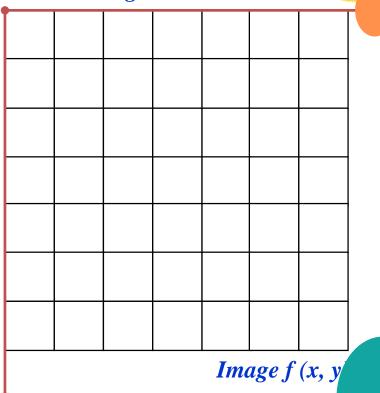
We can delete the d/2 lowest and d/2 highest grey levels

So $g_r(s, t)$ represents the remaining mn - d pixels

V

Noise Corruption Example

Original Image



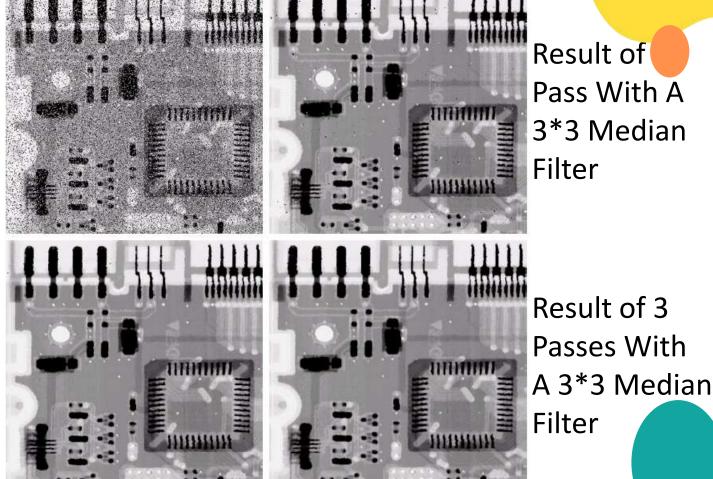
x

54	52	57	55	56	52	51
50	49	51	50	52	53	58
51	204	52	52	0	57	60
48	50	51	49	53	59	63
49	51	52	55	58	64	67
50	54	57	60	63	67	70
51	55	59	62	65	69	72

Image f(x, y)

Filtered Image

19BMB304/Biomedical Image Processing/Dr Karthika A/AP/BME


y

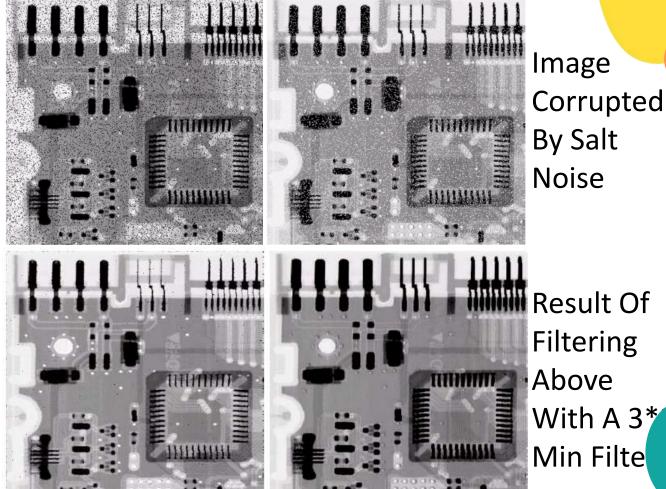
Noise Removal Examples

Image Corrupted By Salt And **Pepper Noise**

Result of Pass With A 3*3 Median Filter

Result of 2 **Passes With** A 3*3 Median Filter

Image Corrupted **By** Pepper Noise


Result Of

Filtering

With A 3*3

Max Filter

Above

19BMB304/Biomedical Image Processing/Dr Karthika A/AP/BME **Result Of** Filtering Above With A 3* Min Filte

Noise Removal Examples (cont...)

Image Corrupted By Uniform Noise

Filtered By 5*5 Arithmetic Mean Filter

> Filtered By 5*5 Median Filter

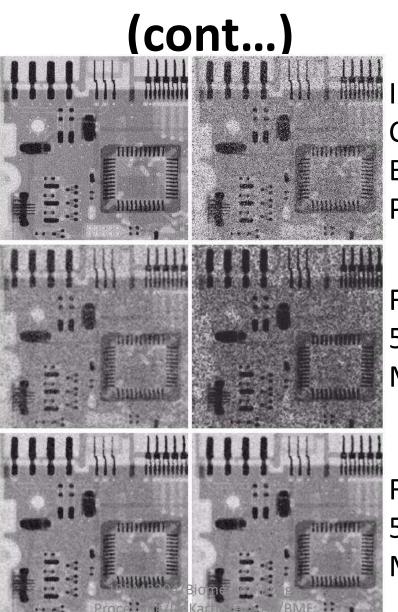
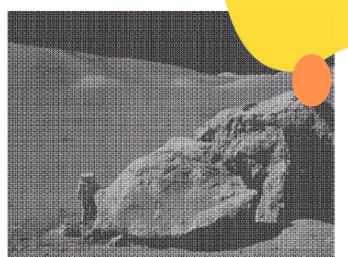


Image Furth Corrupted By Salt and Pepper Noise

Filtered By 5*5 Geometric Mean Filter


Filtered By 5*5 Alpha-Trimmed Mean Filter



Periodic Noise

Typically arises due to electrical or electromagnetic interference Gives rise to regular noise patterns in an image **Frequency domain** techniques in the Fourier domain are most effective at removing periodic noise

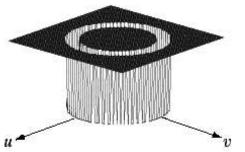
Band Reject Filters

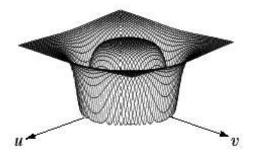
Removing periodic noise form an image involves removing a particular range of frequencies from that image

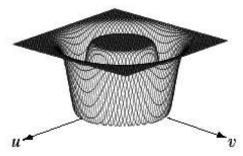
Band reject filters can be used for this purpose

An ideal band reject filter is given as follows: $\int_{1} if D(u,v) < D_0 - \frac{W}{v}$

$$H(u,v) = \begin{cases} 0 & \text{if } D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & \text{if } D(u,v) > D_0 + \frac{W}{2} \end{cases}$$




Band Reject Filters (cont...)


The ideal band reject filter is shown below, along with Butterworth and Gaussian versions of the filter

Ideal Band Reject Filter

Butterworth Band Reject Filter (of order 1)

Gaussian Band Reject Filter

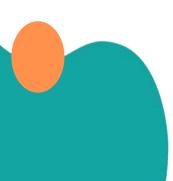
Band Reject Filter Example

Image corrupted by sinusoidal noise

Butterworth band

Filtered image

Fourier spectrum of


corrupted image

reject filterMB304/Biomedical Image Processing/Dr Karthika A/AP/BME

Thank You

