

# **SNS COLLEGE OF TECHNOLOGY**

**Coimbatore-35 An Autonomous Institution** 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# **DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING**

II YEAR IV SEM

**UNIT IV – UNSUPERVISED LEARNING ALGORITHM** 

TOPIC 25 – kNN Algorithm

Redesigning Common Mind & Business Towards Excellence







Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork



#### **kNN - Definition**

k – Nearest Neighbors is one of the simplest Supervised Learning algorithm mostly used for classification and also regression - Classify the data point based on how its neighbors are classified.







#### Real case





#### Tell me about your friends(who your neighbors are) and I will tell you who you are.





Choosing the right value of k is a process called **parameter tuning** and its important for accuracy

> If k=1 then overfitting If k=too large underfitting

> > Choose the k value using the formula **sqrt(n)** N: number of dataset







# When do we use kNN?







# How does kNN Algorithm work?



Consider a dataset having two variables: height (cm) & weight (kg) and each point is classified as Normal or Underweight

| Weight(x2) | Height(y2) | Class       |
|------------|------------|-------------|
| 51         | 167        | Underweight |
| 62         | 182        | Normal      |
| 69         | 176        | Normal      |
| 64         | 173        | Normal      |
| 65         | 172        | Normal      |
| 56         | 174        | Underweight |
| 58         | 169        | Normal      |
| 57         | 173        | Normal      |
| 55         | 170        | Normal      |







# How does kNN Algorithm work?



| 57 kg | 170 cm |  |
|-------|--------|--|
|       |        |  |









The relative difference between two objects in a problem domain

#### **Euclidean Distance**

$$D_{m} = \sum_{i=1}^{n} |p_{i}|$$

#### Minkowski Distance

 $d(\mathbf{p},\mathbf{q})=\sqrt{\sum_{i=1}^{n}(q_i-p_i)^2}$ 

#### Hamming Distance: (Euclidean and Manhattan)

$$D = \left(\sum_{i=1}^{n} |\mathbf{p}_{i} - \mathbf{q}_{i}|^{p}\right)^{1/p}$$







$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

### **Euclidean distance**











- dist(d3)= √(170-176)<sup>2</sup> + (57-69)<sup>2</sup> ~= 13.4
- Similarly, we will calculate Euclidean distance of unknown data point from all the points in the dataset



| Weight(x2) | Height(y2) | Class       | Euclidean Distance |
|------------|------------|-------------|--------------------|
| 51         | 167        | Underweight | 6.7                |
| 62         | 182        | Normal      | 13                 |
| 69         | 176        | Normal      | 13.4               |
| 64         | 173        | Normal      | 7.6                |
| 65         | 172        | Normal      | 8.2                |
| 56         | 174        | Underweight | 4.1                |
| 58         | 169        | Normal      | 1.4                |
| 57         | 173        | Normal      | 3                  |
| 55         | 170        | Normal      | 2                  |

# Where (x1, y1) = (57, 170) whose class we have to classify





Now, lets calculate the nearest neighbor at k=3

| Weight(x2) | Height(y2) | Class       | Euclidean Distant |
|------------|------------|-------------|-------------------|
| 51         | 167        | Underweight | 6.7               |
| 62         | 182        | Normal      | 13                |
| 69         | 176        | Normal      | 13.4              |
| 64         | 173        | Normal      | 7.6               |
| 65         | 172        | Normal      | 8.2               |
| 56         | 174        | Underweight | 4.1               |
| 58         | 169        | Normal      | 1.4               |
| 57         | 173        | Normal      | 3                 |
| 55         | 170        | Normal      | 2                 |

| 57 kg | 170 cm | ? |
|-------|--------|---|
|       |        |   |

 $\odot$ 







Now, lets calculate the nearest neighbor at k=3

| Weight(x2) | Height(y2) | Class       | <b>Euclidean Distance</b> |
|------------|------------|-------------|---------------------------|
| 51         | 167        | Underweight | 6.7                       |
| 62         | 182        | Normal      | 13                        |
| 69         | 176        | Normal      | 13.4                      |
| 64         | 173        | Normal      | 7.6                       |
| 65         | 172        | Normal      | 8.2                       |
| 56         | 174        | Underweight | 4.1                       |
| 58         | 169        | Normal      | 1.4                       |
| 57         | 173        | Normal      | 3                         |
| 55         | 170        | Normal      | 2                         |



| 57 kg | 170 cm | ? |
|-------|--------|---|
|       | L I.   |   |



29.03.2025



|   | Class       | <b>Euclidean Distance</b> |
|---|-------------|---------------------------|
|   | Underweight | 6.7                       |
|   | Normal      | 13                        |
| 1 | Normal      | 13.4                      |
|   | Normal      | 7.6                       |
|   | Normal      | 8.2                       |
|   | Underweight | 4.1                       |
|   | Normal      | 1.4                       |
|   | Normal      | 3                         |
|   | Normal      | 2                         |

So, majority neighbors are pointing towards 'Normal'

Hence, as per KNN algorithm the class of (57, 170) should be 'Normal'

 $\odot$ 











# Recap of KNN

- A positive integer k is specified, along with a new sample
- We select the k entries in our database ٠ which are closest to the new sample
- We find the most common classification of these entries
- This is the classification we give to the ٠ new sample

Step 1: Select the value of K neighbors(say k=5) Euclidean distance(which we discuss later) neighbors of the new data point



- Step 2: Find the K (5) nearest data point for our new data point based on
- Step 3: Among these K data points count the data points in each category
- Step 4: Assign the new data point to the category that has the most

#### **Workout-knn**



| Customer | Age | Loan   | Default |
|----------|-----|--------|---------|
| John     | 25  | 40000  | N       |
| Smith    | 35  | 60000  | N       |
| Alex     | 45  | 80000  | N       |
| Jade     | 20  | 20000  | N       |
| Kate     | 35  | 120000 | N       |
| Mark     | 52  | 18000  | N       |
| Anil     | 23  | 95000  | Y       |
| Pat      | 40  | 62000  | Y       |
| George   | 60  | 100000 | Y       |
| Jim      | 48  | 220000 | Y       |
| Jack     | 33  | 150000 | Y       |
| Andrew   | 48  | 142000 | ?       |



29.03.2025

Knn Algorithm/Dr.N.Nandhini/ASP/MCA/SNSCT





#### We need to predict Andrew default status by using Euclidean distance



#### **Workout-k means**



| Individual | Variable 1 | Variable 2 |
|------------|------------|------------|
| 1          | 1.0        | 1.0        |
| 2          | 1.5        | 2.0        |
| 3          | 3.0        | 4.0        |
| 4          | 5.0        | 7.0        |
| 5          | 3.5        | 5.0        |
| 6          | 4.5        | 5.0        |
| 7          | 3.5        | 4.5        |



29.03.2025





- 1. <u>https://www.simplilearn.com/tutorials/machine-learning-</u> <u>tutorial/knn-in-python</u>
- 2. https://www.youtube.com/watch?v=HZT0lxD5h6k



