
SOFTWARE
DESIGN

Dr.L.M.Nithya,

Professor & Dean-IT

PROGRAMMER’S APPROACH TO SOFTWARE ENGINEERING

Skip requirements engineering and design
phases; start writing code

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 2 / 25

SOFTWARE DESIGN

•Deriving a solution which satisfies software
requirements

WHY THIS PROGRAMMER’S APPROACH?

• Design is a waste of time

• We need to show something to the customer real quick

• We are judged by the amount of LOC/month

• We expect or know that the schedule is too tight

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 3 / 25

WHAT IS NOT DESIGN

• Design is not programming.

• Design is not modeling. Modeling is part of the architectural
design.

• Design is not part of requirements.

• Where requirements finishes and where design starts ?.

• Requirements = What the system is supposed to do.

• Design = How the system is built.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 4 / 25

WHAT IS DESIGN (OR ARCHITECTURE?)

• A high-level model of a software system
– Describes the structure, functionality and characteristics of the software

system.

– Understandable to many stakeholders

– Allows evaluation of the system’s properties before it is built

– Provides well understood tools and techniques for constructing the thing
from its blueprint

• A software system’s blueprint
– Its components
– Their interactions
– Their interconnections

• Which aspects of a software system are architecturally
relevant?

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 5 / 25

WHAT IS DESIGN (OR ARCHITECTURE?)

• How should they be represented most effectively to enable stakeholders to
understand, reason, and communicate about a system before it is built?

• What tools and techniques are useful for implementing an architecture in a
manner that preserves its properties?

• We design the software but we must consider the hardware (and the
environment).

• Design must reflect requirements, and we must be able to relate each
requirements with parts of the design.

• How can we include non-functional requirements into the design?

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 6 / 25

STAGES OF DESIGN
• Problem understanding

– Look at the problem from different angles to discover the
design requirements

• Identify one or more solutions
– Evaluate possible solutions and choose the most

appropriate depending on the designer's experience and
available resources

• Describe solution abstractions
– Use graphical, formal or other descriptive notations to

describe the components of the design

• Repeat process for each identified abstraction
until the design is expressed in primitive terms

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 7 / 35

FROM INFORMAL TO FORMAL
DESIGN

Informal
design
outline

Informal
design

More
formal
design

Finished
design

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 8 / 35

THE DESIGN PROCESS

• The system should be described at several different levels of abstraction

• Design takes place in overlapping stages. It is artificial to separate it into
distinct phases but some separation is usually necessary

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 9 / 35

PHASES IN THE DESIGN PROCESS

Architectural
design

Abstract
specificatio

n

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 10 / 35

DESIGN PHASES

• Architectural design Identify sub-systems

• Abstract specification Specify sub-systems

• Interface design Describe sub-system interfaces

• Component design Decompose sub-systems into components

• Data structure design Design data structures to hold problem
data

• Algorithm design Design algorithms for problem functions

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 11 / 35

FROM REQUIREMENTS TO ARCHITECTURE
• From problem definition to requirements specification

– Determine exactly what the customer and user want

– Specifies what the software product is to do

• From requirements specification to architecture

– How do we plan to build (design) the system ?

– Decompose software into modules with interfaces

– Specify high-level behavior, interactions, and non-functional properties

– Consider key tradeoffs

• Schedule vs. Budget

• Cost vs. Robustness

• Fault Tolerance vs. Size

• Security vs. Speed

– Maintain a record of design decisions and traceability

– Specifies how the software product is to do its tasks (from design to programming).
03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 12 / 35

ARCHITECTURAL DESIGN

• An early stage of the system design process.

• Represents the link between specification and design processes.

• Where do we finish requirements and start design ?.

• Often carried out in parallel with some specification activities.

• It involves identifying major system components and their
communications.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 13 / 25

ADVANTAGES OF EXPLICIT ARCHITECTURE

• From Requirements to Design
• Stakeholder communication

– Architecture may be used as a focus of discussion by system stakeholders.

• System analysis
– Means that analysis of whether the system can meet its non-functional requirements is

possible.

• Large-scale reuse
– The architecture may be reusable across a range of systems.

• From Design to Programming ,Testing & Maintenance.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 14 / 35

ARCHITECTURE AND SYSTEM CHARACTERISTICS

How the system must be designed to achieve:

• Performance
• Security
• Safety
• Reliability
• Availability
• Maintainability
• Quality

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 15 / 25

ARCHITECTURAL DESIGN PROCESS
• System structuring

– The system is decomposed into several principal sub-systems and
communications between these sub-systems are identified

• Control modelling

– A model of the control relationships between the different parts of the system
is established

• Modular decomposition

– The identified sub-systems are decomposed into modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 16 / 35

DESIGN QUALITY
• Design quality is an elusive concept. Quality depends on specific

organisational priorities

• A 'good' design may be the most efficient, the cheapest, the most
maintainable, the most reliable, etc.

• The attributes discussed here are concerned with the maintainability of
the design

• Quality characteristics are equally applicable to function-oriented and
object-oriented designs

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 17 / 35

DESIGN PRINCIPLES
• Abstraction

• Modularity, coupling and cohesion

• Information hiding

• Limit complexity

• Hierarchical structure

• Understandability

• Adaptability

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 18 / 35

ABSTRACTION

• procedural abstraction: natural consequence of stepwise refinement: name of procedure
denotes sequence of actions

abstraction subproblems

time

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 19 / 35

ABSTRACTION
• data abstraction: aimed at finding a hierarchy in the data

application-oriented
data structures

simpler data
structuregeneral

data structures

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 20 / 35

MODULARITY

• structural criteria which tell us something about individual modules and
their interconnections

• cohesion and coupling

• cohesion: the glue that keeps a module together

• coupling: the strength of the connection between modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 21 / 35

COHESION

• A measure of how well a component 'fits together'

• A component should implement a single logical entity or function

• Cohesion is a desirable design component attribute as when a change has to be
made, it is localised in a single cohesive component

• Various levels of cohesion have been identified

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 22 / 35

COHESION LEVELS
• Coincidental cohesion (weak)

– Parts of a component are simply bundled together

• Logical association (weak)

– Components which perform similar functions are grouped

• Temporal cohesion (weak)

– Components which are activated at the same time are grouped

• Procedural cohesion (weak)

– The elements in a component make up a single control sequence

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 23 / 35

COHESION LEVELS
• Communicational cohesion (medium)

– All the elements of a component operate on the same input or produce the same output

• Sequential cohesion (medium)

– The output for one part of a component is the input to another part

• Functional cohesion (strong)

– Each part of a component is necessary for the execution of a single function

• Object cohesion (strong)

– Each operation provides functionality which allows object attributes to be modified or
inspected

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 24 / 35

COHESION AS A DESIGN ATTRIBUTE

• Not well-defined. Often difficult to classify cohesion

• Inheriting attributes from super-classes weakens cohesion

• To understand a component, the super-classes as well as the component class must be
examined

• Object class browsers assist with this process

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 25 /35

COUPLING
• A measure of the strength of the inter-connections between system

components

• Loose coupling means component changes are unlikely to affect other
components

• Shared variables or control information exchange lead to tight coupling

• Loose coupling can be achieved by state decentralisation (as in objects)
and component communication via parameters or message passing

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 26 / 35

TIGHT COUPLING

Module A Module B

Module C Module D

Shared data
area

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 27 / 35

LOOSE COUPLING

Module A

A’s data

Module B

B’s data

Module D

D’s data

Module C

C’s data

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 28 / 35

COUPLING AND INHERITANCE

• Object-oriented systems are loosely coupled because there is no shared state and

objects communicate using message passing

• However, an object class is coupled to its super-classes. Changes made to the attributes

or operations in a super-class propagate to all sub-classes. Such changes must be carefully

controlled

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 29 / 35

INFORMATION HIDING

• each module has a secret

• design involves a series of decision: for each such decision, wonder
who needs to know and who can be kept in the dark

• information hiding is strongly related to

– abstraction: if you hide something, the user may abstract from that
fact

– coupling: the secret decreases coupling between a module and its
environment

– cohesion: the secret is what binds the parts of the module together

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 30 / 35

COMPLEXITY

• measure certain aspects of the software (lines of code, # of if-statements, depth of
nesting, …)

• use these numbers as a criterion to assess a design, or to guide the design

• interpretation: higher value  higher complexity more effort required (= worse
design)

• two kinds:

– intra-modular: inside one module

– inter-modular: between modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 31 / 35

TOP-DOWN DESIGN

• In principle, top-down design involves starting
at the uppermost components in the hierarchy
and working down the hierarchy level by level

• In practice, large systems design is never
truly top-down. Some branches are designed before others. Designers reuse experience
(and
sometimes components) during the design
process

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 32 / 35

HIERARCHICAL DESIGN
STRUCTURE

System level

Sub-system
level

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 33 / 35

UNDERSTANDABILITY
• Related to several component characteristics

– Cohesion. Can the component be understood on its own?

– Naming. Are meaningful names used?

– Documentation. Is the design well-documented?

– Complexity. Are complex algorithms used?

• Informally, high complexity means many relationships between different parts of the
design. hence it is hard to understand

• Most design quality metrics are oriented towards complexity measurement. They are
of limited use

3203-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 34 / 35

ADAPTABILITY
• A design is adaptable if:

– Its components are loosely coupled

– It is well-documented and the documentation is up to date

– There is an obvious correspondence between design levels (design visibility)

– Each component is a self-contained entity (tightly cohesive)

• To adapt a design, it must be possible to trace the links between design components so
that change consequences can be analysed

3303-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 35 / 35

DESIGN TRACEABILITY

P O R

D

A

B

F

C

D Object interaction
level

Object decomposition
level

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

