SOFTWARE
DESIGN

Dr.L.M.Nithya,
Professor & Dean-IT




SOFTWARE DESIGN

* Deriving a solution which satisfies software
requirements

PROGRAMMER’S APPROACH TO SOFTWARE ENGINEERING

Skip requirements engineering and design ‘
phases; start writing code

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 2 /25




WHY THIS PROGRAMMER’S APPROACH?

Design is a waste of time
We need to show something to the customer real quick
 We are judged by the amount of LOC/month

* We expect or know that the schedule is too tight

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 3/25




WHAT IS NOT DESIGN

* Design is not programming.

* Design is not modeling. Modeling is part of the architectural
design.

* Design is not part of requirements.
 Where requirements finishes and where design starts ?.
* Requirements = What the system is supposed to do.

* Design = How the system is built.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 4 /25




WHAT IS DESIGN (OR ARCHITECTURE?)

* A high-level model of a software system

— Describes the structure, functionality and characteristics of the software
system.

— Understandable to many stakeholders
— Allows evaluation of the system’s properties before it is built

— Provides well understood tools and techniques for constructing the thing
from its blueprint

e A software system’s blueprint
— Its components
— Their interactions
— Their interconnections

 Which aspects of a software system are architecturally
relevant?

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 5/25




WHAT IS DESIGN (OR ARCHITECTURE?)

 How should they be represented most effectively to enable stakeholders to
understand, reason, and communicate about a system before it is built?

 What tools and techniques are useful for implementing an architecture in a
manner that preserves its properties?

 We design the software but we must consider the hardware (and the
environment).

* Design must reflect requirements, and we must be able to relate each
requirements with parts of the design.

* How can we include non-functional requirements into the design?

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 6/25




STAGES OF DESIGN

Problem understanding

— Look at the problem from different angles to discover the
design requirements

Identify one or more solutions

— Evaluate possible solutions and choose the most
appropriate depending on the designer's experience and
available resources

Describe solution abstractions

— Use graphical, formal or other descriptive notations to
describe the components of the design

Repeat process for each identified abstraction
until the design is expressed in primitive terms

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

7/35

INSTOTP



FROM INFORMAL TO FORMAL
DESIGN

Informal
design &
outline |}

Informal f
design ¢

Finished
design

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 8/35




THE DESIGN PROCESS

* The system should be described at several different levels of abstraction

* Design takes place in overlapping stages. It is artificial to separate it into
distinct phases but some separation is usually necessary

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 9/35




b

IV STOTP

PHASES IN THE DESIGN PROCESS

Requiements
specificdion
Architectual Abstact

design /S specificdio /f

Design actiities

Interface Component
design 1 design /¥

Daa
structue
design

Algorithm
design

Daa
structue
specificdion

Software
specificdion

Algorithm
specifiction

Interface
specifiction

System
architectue

Component
specificdion

Design prducts

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 10/ 35




DESIGN PHASES

 Architectural design Identify sub-systems

» Abstract specification Specify sub-systems

* Interface design Describe sub-system interfaces

* Component design Decompose sub-systems into components

* Data structure design Design data structures to hold problem
data

* Algorithm design Design algorithms for problem functions

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 11 /35




INSTOTP

FROM REQUIREMENTS TO ARCHITECTURE

* From problem definition to requirements specification
— Determine exactly what the customer and user want
— Specifies what the software productis to do
* From requirements specification to architecture
— How do we plan to build (design) the system ?
— Decompose software into modules with interfaces
— Specify high-level behavior, interactions, and non-functional properties
— Consider key tradeoffs
e Schedule vs. Budget
e Costvs. Robustness
e Fault Tolerance vs. Size
e Security vs. Speed
— Maintain a record of design decisions and traceability

— Specifies how the software product is to do its tasks (from design to programming).
03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 12 /35




ARCHITECTURAL DESIGN

* An early stage of the system design process.

* Represents the link between specification and design processes.

* Where do we finish requirements and start design ?.
 Often carried out in parallel with some specification activities.

* [t involves identifying major system components and their
communications.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

13/25




ADVANTAGES OF EXPLICIT ARCHITECTURE

From Requirements to Design

Stakeholder communication

— Architecture may be used as a focus of discussion by system stakeholders.

System analysis

— Means that analysis of whether the system can meet its non-functional requirements is
possible.

Large-scale reuse

— The architecture may be reusable across a range of systems.

From Design to Programming ,Testing & Maintenance.

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 14 /35




ARCHITECTURE AND SYSTEM CHARACTERISTICS

How the system must be designed to achieve:

* Performance

* Security
 Safety
 Reliability
 Availability

e Maintainability
e Quality

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 15/ 25




ARCHITECTURAL DESIGN PROCESS |

* System structuring

— The system is decomposed into several principal sub-systems and
communications between these sub-systems are identified

* Control modelling

— A model of the control relationships between the different parts of the system
is established

* Modular decomposition

— The identified sub-systems are decomposed into modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 16 / 35




DESIGN QUALITY

* Design quality is an elusive concept. Quality depends on specific
organisational priorities

* A 'good’ design may be the most efficient, the cheapest, the most
maintainable, the most reliable, etc.

* The attributes discussed here are concerned with the maintainability of
the design

* Quality characteristics are equally applicable to function-oriented and
object-oriented designs

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 17 / 35




DESIGN PRINCIPLES

* Abstraction

* Modularity, coupling and cohesion
* Information hiding

* Limit complexity

* Hierarchical structure

* Understandability

* Adaptability

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 18 /35




~» L
LI rrruie

ABSTRACTION

« procedural abstraction: natural consequence of stepwise refinement: name of procedure
denotes sequence of actions

abstraction subproblems

<«
time

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 19 /35




ABSTRACTION

e data abstraction: aimed at finding a hierarchy in the data

application-oriented
data structures

A
v simpler data
gener Al structure

data structures

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

20/ 35




MODULARITY

 structural criteria which tell us something about individual modules and
their interconnections

* cohesion and coupling
e cohesion: the glue that keeps a module together

e coupling: the strength of the connection between modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 21/35




COHESION

A measure of how well a component 'fits together"
* A component should implement a single logical entity or function

e Cohesion is a desirable design component attribute as when a change has to be
made, it is localised in a single cohesive component

» Various levels of cohesion have been identified

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 22 /35




COHESION LEVELS

Coincidental cohesion (weak)

— Parts of a component are simply bundled together

Logical association (weak)

— Components which perform similar functions are grouped

Temporal cohesion (weak)

— Components which are activated at the same time are grouped

Procedural cohesion (weak)

— The elements in a component make up a single control sequence

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

23 /35




b

IV STDTP

COHESION LEVELS

Communicational cohesion (medium)

— All the elements of a component operate on the same input or produce the same output

Sequential cohesion (medium)

— The output for one part of a component is the input to another part

Functional cohesion (strong)

— Each part of a component is necessary for the execution of a single function

Object cohesion (strong)

— Each operation provides functionality which allows object attributes to be modified or
inspected

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 24 / 35



COHESION AS A DESIGN ATTRIBUTE

Not well-defined. Often difficult to classify cohesion

Inheriting attributes from super-classes weakens cohesion

To understand a component, the super-classes as well as the component class must be
examined

Object class browsers assist with this process

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 25 /35




COUPLING

A measure of the strength of the inter-connections between system
components

Loose coupling means component changes are unlikely to affect other
components

Shared variables or control information exchange lead to tight coupling

Loose coupling can be achieved by state decentralisation (as in objects)
and component communication via parameters or message passing

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 26 / 35




TIGHT COUPLING

03-04-2025

Module A Module B

Module C Module D

Shared data
area

Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

27 /35




LOOSE COUPLING

03-04-2025

Module B

B’s data

Module D

D’s data

Module A

A’s data

Module C

C’s data

Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT

28 /35




COUPLING AND INHERITANCE

* Object-oriented systems are loosely coupled because there is no shared state and

objects communicate using message passing

* However, an object class is coupled to its super-classes. Changes made to the attributes
or operations in a super-class propagate to all sub-classes. Such changes must be carefully

controlled

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 29 /35




INFORMATION HIDING

03-04-2025

each module has a secret

design involves a series of decision: for each such decision, wonder
who needs to know and who can be kept in the dark

information hiding is strongly related to

— abstraction: if you hide something, the user may abstract from that
fact

— coupling: the secret decreases coupling between a module and its
environment

— cohesion: the secret is what binds the parts of the module together

Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 30/ 35

~» A
INSITIOIP



COMPLEXITY

 measure certain aspects of the software (lines of code, # of if-statements, depth of
nesting, ...)

* use these numbers as a criterion to assess a design, or to guide the design
* interpretation: higher value = higher complexity = more effort required (= worse
design)
e two Kkinds:
— intra-modular: inside one module

— inter-modular: between modules

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 31/35




TOP-DOWN DESIGN

 In principle, top-down design involves starting
at the uppermost components in the hierarchy
and working down the hierarchy level by level

 In practice, large systems design is never
truly top-down. Some branches are designed before others. Designers reuse experience
(and
sometimes components) during the design
process

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 32 /35




HIERARCHICAL DESIGN
STRUCTURE




UNDERSTANDABILITY

» Related to several component characteristics
— Cohesion. Can the component be understood on its own?
— Naming. Are meaningful names used?
— Documentation. Is the design well-documented?
— Complexity. Are complex algorithms used?

 Informally, high complexity means many relationships between different parts of the
design. hence it is hard to understand

* Most design quality metrics are oriented towards complexity measurement. They are
of limited use

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 32 34/35




ADAPTABILITY

» A design is adaptable if:
— Its components are loosely coupled
— Itis well-documented and the documentation is up to date
— There is an obvious correspondence between design levels (design visibility)

— Each component is a self-contained entity (tightly cohesive)

* To adapt a design, it must be possible to trace the links between design components so
that change consequences can be analysed

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT 33 35/35




Object interaction
level

Object decomposition
level

03-04-2025 Design/ Software Engineering / Dr.L.M.Nithya/ IT / SNSCT




