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SOFTWARE DESIGN

* Deriving a solution which satisfies software
requirements

PROGRAMMER’S APPROACH TO SOFTWARE ENGINEERING

Skip requirements engineering and design ‘
phases; start writing code
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WHY THIS PROGRAMMER’S APPROACH?

Design is a waste of time
We need to show something to the customer real quick
 We are judged by the amount of LOC/month

* We expect or know that the schedule is too tight
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WHAT IS NOT DESIGN

* Design is not programming.

* Design is not modeling. Modeling is part of the architectural
design.

* Design is not part of requirements.
 Where requirements finishes and where design starts ?.
* Requirements = What the system is supposed to do.

* Design = How the system is built.
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WHAT IS DESIGN (OR ARCHITECTURE?)

* A high-level model of a software system

— Describes the structure, functionality and characteristics of the software
system.

— Understandable to many stakeholders
— Allows evaluation of the system’s properties before it is built

— Provides well understood tools and techniques for constructing the thing
from its blueprint

e A software system’s blueprint
— Its components
— Their interactions
— Their interconnections

 Which aspects of a software system are architecturally
relevant?
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WHAT IS DESIGN (OR ARCHITECTURE?)

 How should they be represented most effectively to enable stakeholders to
understand, reason, and communicate about a system before it is built?

 What tools and techniques are useful for implementing an architecture in a
manner that preserves its properties?

 We design the software but we must consider the hardware (and the
environment).

* Design must reflect requirements, and we must be able to relate each
requirements with parts of the design.

* How can we include non-functional requirements into the design?
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STAGES OF DESIGN

Problem understanding

— Look at the problem from different angles to discover the
design requirements

Identify one or more solutions

— Evaluate possible solutions and choose the most
appropriate depending on the designer's experience and
available resources

Describe solution abstractions

— Use graphical, formal or other descriptive notations to
describe the components of the design

Repeat process for each identified abstraction
until the design is expressed in primitive terms
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FROM INFORMAL TO FORMAL
DESIGN

Informal
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outline |}
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Finished
design
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THE DESIGN PROCESS

* The system should be described at several different levels of abstraction

* Design takes place in overlapping stages. It is artificial to separate it into
distinct phases but some separation is usually necessary
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PHASES IN THE DESIGN PROCESS
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DESIGN PHASES

 Architectural design Identify sub-systems

» Abstract specification Specify sub-systems

* Interface design Describe sub-system interfaces

* Component design Decompose sub-systems into components

* Data structure design Design data structures to hold problem
data

* Algorithm design Design algorithms for problem functions
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FROM REQUIREMENTS TO ARCHITECTURE

* From problem definition to requirements specification
— Determine exactly what the customer and user want
— Specifies what the software productis to do
* From requirements specification to architecture
— How do we plan to build (design) the system ?
— Decompose software into modules with interfaces
— Specify high-level behavior, interactions, and non-functional properties
— Consider key tradeoffs
e Schedule vs. Budget
e Costvs. Robustness
e Fault Tolerance vs. Size
e Security vs. Speed
— Maintain a record of design decisions and traceability

— Specifies how the software product is to do its tasks (from design to programming).
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ARCHITECTURAL DESIGN

* An early stage of the system design process.

* Represents the link between specification and design processes.

* Where do we finish requirements and start design ?.
 Often carried out in parallel with some specification activities.

* [t involves identifying major system components and their
communications.
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ADVANTAGES OF EXPLICIT ARCHITECTURE

From Requirements to Design

Stakeholder communication

— Architecture may be used as a focus of discussion by system stakeholders.

System analysis

— Means that analysis of whether the system can meet its non-functional requirements is
possible.

Large-scale reuse

— The architecture may be reusable across a range of systems.

From Design to Programming ,Testing & Maintenance.
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ARCHITECTURE AND SYSTEM CHARACTERISTICS

How the system must be designed to achieve:

* Performance

* Security
 Safety
 Reliability
 Availability

e Maintainability
e Quality
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ARCHITECTURAL DESIGN PROCESS |

* System structuring

— The system is decomposed into several principal sub-systems and
communications between these sub-systems are identified

* Control modelling

— A model of the control relationships between the different parts of the system
is established

* Modular decomposition

— The identified sub-systems are decomposed into modules
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DESIGN QUALITY

* Design quality is an elusive concept. Quality depends on specific
organisational priorities

* A 'good’ design may be the most efficient, the cheapest, the most
maintainable, the most reliable, etc.

* The attributes discussed here are concerned with the maintainability of
the design

* Quality characteristics are equally applicable to function-oriented and
object-oriented designs
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DESIGN PRINCIPLES

* Abstraction

* Modularity, coupling and cohesion
* Information hiding

* Limit complexity

* Hierarchical structure

* Understandability

* Adaptability
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ABSTRACTION

« procedural abstraction: natural consequence of stepwise refinement: name of procedure
denotes sequence of actions

abstraction subproblems

<«
time
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ABSTRACTION

e data abstraction: aimed at finding a hierarchy in the data

application-oriented
data structures

A
v simpler data
gener Al structure

data structures
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MODULARITY

 structural criteria which tell us something about individual modules and
their interconnections

* cohesion and coupling
e cohesion: the glue that keeps a module together

e coupling: the strength of the connection between modules
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COHESION

A measure of how well a component 'fits together"
* A component should implement a single logical entity or function

e Cohesion is a desirable design component attribute as when a change has to be
made, it is localised in a single cohesive component

» Various levels of cohesion have been identified
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COHESION LEVELS

Coincidental cohesion (weak)

— Parts of a component are simply bundled together

Logical association (weak)

— Components which perform similar functions are grouped

Temporal cohesion (weak)

— Components which are activated at the same time are grouped

Procedural cohesion (weak)

— The elements in a component make up a single control sequence
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COHESION LEVELS

Communicational cohesion (medium)

— All the elements of a component operate on the same input or produce the same output

Sequential cohesion (medium)

— The output for one part of a component is the input to another part

Functional cohesion (strong)

— Each part of a component is necessary for the execution of a single function

Object cohesion (strong)

— Each operation provides functionality which allows object attributes to be modified or
inspected
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COHESION AS A DESIGN ATTRIBUTE

Not well-defined. Often difficult to classify cohesion

Inheriting attributes from super-classes weakens cohesion

To understand a component, the super-classes as well as the component class must be
examined

Object class browsers assist with this process
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COUPLING

A measure of the strength of the inter-connections between system
components

Loose coupling means component changes are unlikely to affect other
components

Shared variables or control information exchange lead to tight coupling

Loose coupling can be achieved by state decentralisation (as in objects)
and component communication via parameters or message passing
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TIGHT COUPLING

03-04-2025

Module A Module B

Module C Module D

Shared data
area
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LOOSE COUPLING
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Module B

B’s data

Module D

D’s data

Module A

A’s data

Module C

C’s data
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COUPLING AND INHERITANCE

* Object-oriented systems are loosely coupled because there is no shared state and

objects communicate using message passing

* However, an object class is coupled to its super-classes. Changes made to the attributes
or operations in a super-class propagate to all sub-classes. Such changes must be carefully

controlled
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INFORMATION HIDING

03-04-2025

each module has a secret

design involves a series of decision: for each such decision, wonder
who needs to know and who can be kept in the dark

information hiding is strongly related to

— abstraction: if you hide something, the user may abstract from that
fact

— coupling: the secret decreases coupling between a module and its
environment

— cohesion: the secret is what binds the parts of the module together
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COMPLEXITY

 measure certain aspects of the software (lines of code, # of if-statements, depth of
nesting, ...)

* use these numbers as a criterion to assess a design, or to guide the design
* interpretation: higher value = higher complexity = more effort required (= worse
design)
e two Kkinds:
— intra-modular: inside one module

— inter-modular: between modules
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TOP-DOWN DESIGN

 In principle, top-down design involves starting
at the uppermost components in the hierarchy
and working down the hierarchy level by level

 In practice, large systems design is never
truly top-down. Some branches are designed before others. Designers reuse experience
(and
sometimes components) during the design
process
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HIERARCHICAL DESIGN
STRUCTURE




UNDERSTANDABILITY

» Related to several component characteristics
— Cohesion. Can the component be understood on its own?
— Naming. Are meaningful names used?
— Documentation. Is the design well-documented?
— Complexity. Are complex algorithms used?

 Informally, high complexity means many relationships between different parts of the
design. hence it is hard to understand

* Most design quality metrics are oriented towards complexity measurement. They are
of limited use
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ADAPTABILITY

» A design is adaptable if:
— Its components are loosely coupled
— Itis well-documented and the documentation is up to date
— There is an obvious correspondence between design levels (design visibility)

— Each component is a self-contained entity (tightly cohesive)

* To adapt a design, it must be possible to trace the links between design components so
that change consequences can be analysed
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Object interaction
level

Object decomposition
level
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