
Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23CST202 – Operating Systems
II YEAR - IV SEM

UNIT 1 – Overview and Process Management

TOPIC 2 – Process

Syllabus

UNIT I OVERVIEW AND PROCESS MANAGEMENT 9

Introduction - Computer System Organization, Architecture, Operation, Process Management – Memory Management – Storage Management –

Operating System – Process concept – Process scheduling – Operations on processes – Cooperating processes – Inter process communication.

Threads - Multi-threading Models – Threading issues.

UNIT II PROCESS SCHEDULING AND SYNCHRONIZATION 10

CPU Scheduling - Scheduling criteria – Scheduling algorithms – Multiple-processor scheduling – Real time scheduling – Algorithm

Evaluation. Process Synchronization - The critical-section problem – Synchronization hardware – Semaphores – Classical problems of

synchronization. Deadlock - System model – Deadlock characterization – Methods for handling deadlocks – Deadlock prevention – Deadlock

avoidance – Deadlock detection – Recovery from deadlock.

UNIT III MEMORY MANAGEMENT 9

Memory Management - Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation with paging.

Virtual Memory - Background – Demand paging – Process creation – Page replacement – Allocation of frames – Thrashing.

UNIT IV FILE SYSTEMS 8

File concept - Access methods – Directory structure – Files System Mounting – File Sharing – Protection. File System Implementation -

Directory implementation – Allocation methods – Free-space management.

UNIT V I/O SYSTEMS 9

I/O Systems - I/O Hardware – Application I/O interface – Kernel I/O subsystem – Streams – Performance. Mass-Storage Structure: Disk

scheduling – Disk management – Swap-space management – RAID – Disk attachment – Stable storage – Tertiary storage. Case study:

Implementation of Distributed File system in Cloud OS / Mobile OS.

L :45 P:0 T: 45 PERIODS

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost

interchangeably.

 Process – a program in execution; process execution must

progress in sequential fashion.

 A process includes:

 program counter

 stack

 data section

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process State

 As a process executes, it changes state

 new: The process is being created.

 running: Instructions are being executed.

 waiting: The process is waiting for some event to occur.

 ready: The process is waiting to be assigned to a process.

 terminated: The process has finished execution.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Diagram of Process State

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Control Block (PCB)
Information associated with each process.

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Control Block (PCB)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

CPU Switch From Process to Process

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Scheduling Queues

 Job queue – set of all processes in the system.

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute.

 Device queues – set of processes waiting for an I/O device.

 Process migration between the various queues.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Ready Queue And Various I/O Device Queues

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Representation of Process Scheduling

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue.

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Addition of Medium Term Scheduling

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently

(milliseconds) (must be fast).

 Long-term scheduler is invoked very infrequently

(seconds, minutes) (may be slow).

 The long-term scheduler controls the degree of

multiprogramming.

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

 CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Context Switch
 When CPU switches to another process, the system must save

the state of the old process and load the saved state for the

new process.

 Context-switch time is overhead; the system does no useful

work while switching.

 Time dependent on hardware support.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Creation

 Parent process create children processes, which, in turn

create other processes, forming a tree of processes.

 Resource sharing

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution

 Parent and children execute concurrently.

 Parent waits until children terminate.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Creation (Cont.)

 Address space

 Child duplicate of parent.

 Child has a program loaded into it.

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’

memory space with a new program.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Processes Tree on a UNIX System

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Process Termination

 Process executes last statement and asks the operating
system to decide it (exit).

 Output data from child to parent (via wait).

 Process’ resources are deallocated by operating system.

 Parent may terminate execution of children processes
(abort).

 Child has exceeded allocated resources.

 Task assigned to child is no longer required.

 Parent is exiting.

 Operating system does not allow child to continue if its parent
terminates.

 Cascading termination.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Cooperating Processes

 Independent process cannot affect or be affected by the

execution of another process.

 Cooperating process can affect or be affected by the

execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process.

 unbounded-buffer places no practical limit on the size of

the buffer.

 bounded-buffer assumes that there is a fixed buffer size.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

Typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Bounded-Buffer – Producer Process

 item nextProduced;

 while (1) {

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 }

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Bounded-Buffer – Consumer Process

 item nextConsumed;

 while (1) {

 while (in == out)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 }

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Producer-Consumer problem is a classical

synchronization problem in the operating system.

 With the presence of more than one process and limited

resources in the system the synchronization problem

arises.

 If one resource is shared between more than one

process at the same time then it can lead to data

inconsistency.

 In the producer-consumer problem, the producer

produces an item and the consumer consumes the item

produced by the producer.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 What is Producer Consumer Problem?

 Before knowing what is Producer-Consumer Problem we have
to know what are Producer and Consumer.

• In operating System Producer is a process which is able to
produce data/item.

• Consumer is a Process that is able to consume the data/item
produced by the Producer.

• Both Producer and Consumer share a common memory buffer.

• This buffer is a space of a certain size in the memory of the
system which is used for storage.

• The producer produces the data into the buffer and the
consumer consumes the data from the buffer.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 So, what are the Producer-Consumer Problems?

 Producer Process should not produce any data when the
shared buffer is full.

 Consumer Process should not consume any data when the
shared buffer is empty.

 The access to the shared buffer should be mutually exclusive
i.e at a time only one process should be able to access the
shared buffer and make changes to it.

 For consistent data synchronization between Producer and
Consumer, the above problem should be resolved.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Solution For Producer Consumer Problem

 To solve the Producer-Consumer problem three semaphores
variable are used :

 Semaphores are variables used to indicate the number of
resources available in the system at a particular time.
semaphore variables are used to achieve `Process
Synchronization.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Solution For Producer Consumer Problem

 To solve the Producer-Consumer problem three semaphores
variable are used :

 Semaphores are variables used to indicate the number of
resources available in the system at a particular time.
semaphore variables are used to achieve `Process
Synchronization.

 FULL

 EMPTY

 MUTEX

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Full

 The full variable is used to track the space filled in the buffer
by the Producer process. It is initialized to 0 initially as initially
no space is filled by the Producer process.

 Empty

 The Empty variable is used to track the empty space in the
buffer. The Empty variable is initially initialized to the BUFFER-
SIZE as initially, the whole buffer is empty.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Mutex

 Mutex is used to achieve mutual exclusion. mutex ensures that
at any particular time only the producer or the consumer is
accessing the buffer.

 Mutex - mutex is a binary semaphore variable that has a value
of 0 or 1.

 We will use the Signal() and wait() operation in the above-
mentioned semaphores to arrive at a solution to the Producer-
Consumer problem.

 Signal() - The signal function increases the semaphore value
by 1. Wait() - The wait operation decreases the semaphore
value by 1.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Let's look at the code of Producer-Consumer Process

 The code for Producer Process is as follows :

 void Producer(){

 while(true){

 // producer produces an item/data

 wait(Empty);

 wait(mutex);

 add();

 signal(mutex);

 signal(Full);

 }}
Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

 Let's understand the above Producer process code :

• wait(Empty):

• Before producing items, the producer process checks for the
empty space in the buffer.

• If the buffer is full producer process waits for the consumer
process to consume items from the buffer.

• so, the producer process executes wait(Empty) before
producing any item.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

• wait(mutex):

• Only one process can access the buffer at a time.

• So, once the producer process enters into the critical section of
the code it decreases the value of mutex by executing
wait(mutex) so that no other process can access the buffer at
the same time.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Producer-Consumer Problem

• add() - This method adds the item to the buffer produced by
the Producer process. once the Producer process reaches add
function in the code, it is guaranteed that no other process will
be able to access the shared buffer concurrently which helps in
data consistency.

• signal(mutex) - Now, once the Producer process added the
item into the buffer it increases the mutex value by 1 so that
other processes which were in a busy-waiting state can access
the critical section.

• signal(Full) - when the producer process adds an item into the
buffer spaces is filled by one item so it increases the Full
semaphore so that it indicates the filled spaces in the buffer
correctly.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

• Processes need to communicate with each other in many

situations, for example, to count occurrences of a word

in text file, output of grep command needs to be given to

wc command, something like grep -o -i <word> <file> |

wc -l.

• Inter-Process Communication or IPC is a mechanism that

allows processes to communicate.

• It helps processes synchronize their activities, share

information, and avoid conflicts while accessing shared

resources.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Types of Process
Let us first talk about types of types of processes.

•Independent process: An independent process is not
affected by the execution of other processes. Independent
processes are processes that do not share any data or
resources with other processes.

•No inter-process communication required here.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•Co-operating process:

•Interact with each other and share data or resources.

•A co-operating process can be affected by other executing
processes.

•Inter-process communication (IPC) is a mechanism that
allows processes to communicate with each other and
synchronize their actions.

•The communication between these processes can be seen
as a method of cooperation between them.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•Inter process communication (IPC) allows different
programs or processes running on a computer to share
information with each other.

•IPC allows processes to communicate by using different
techniques like sharing memory, sending messages, or using
files.

•It ensures that processes can work together without
interfering with each other.

•Cooperating processes require an Inter Process
Communication (IPC) mechanism that will allow them to
exchange data and information.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•The two fundamental models of Inter Process
Communication are:

•Shared Memory

•Message Passing

•Figure below shows a basic structure of communication
between processes via the shared memory method and via
the message passing method.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•An operating system can implement both methods of
communication.

•First, we will discuss the shared memory methods of
communication and then message passing.

•Communication between processes using shared memory
requires processes to share some variable, and it completely
depends on how the programmer will implement it. .

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•One way of communication using shared memory can be imagined like
this:

•Suppose process1 and process2 are executing simultaneously, and they
share some resources or use some information from another process.

•Process1 generates information about certain computations or
resources being used and keeps it as a record in shared memory.

•When process2 needs to use the shared information, it will check in the
record stored in shared memory and take note of the information
generated by process1 and act accordingly.

•Processes can use shared memory for extracting information as a record
from another process as well as for delivering any specific information to
other processes.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•Methods in Inter process Communication

•Inter-Process Communication refers to the techniques and
methods that allow processes to exchange data and
coordinate their activities.

•Since processes typically operate independently in a
multitasking environment, IPC is essential for them to
communicate effectively without interfering with one
another.

•There are several methods of IPC, each designed to suit
different scenarios and requirements.

•These methods include shared memory, message passing,
semaphores, and signals, etc.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•Role of Synchronization in IPC

•In IPC, synchronization is essential for controlling access to
shared resources and guaranteeing that processes do not
conflict with one another.

•Data consistency is ensured and problems like race
situations are avoided with proper synchronization.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

•Advantages of IPC

•Enables processes to communicate with each other and
share resources, leading to increased efficiency and
flexibility.

•Facilitates coordination between multiple processes,
leading to better overall system performance.

•Allows for the creation of distributed systems that can span
multiple computers or networks.

•Can be used to implement various synchronization and
communication protocols, such as semaphores, pipes, and
sockets.

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Disadvantages of IPC
•Increases system complexity, making it harder to design, implement,
and debug.

•Can introduce security vulnerabilities, as processes may be able to
access or modify data belonging to other processes.

•Requires careful management of system resources, such as memory
and CPU time, to ensure that IPC operations do not degrade overall
system performance.
Can lead to data inconsistencies if multiple processes try to access or
modify the same data at the same time.

•Overall, the advantages of IPC outweigh the disadvantages, as it is a
necessary mechanism for modern operating systems and enables
processes to work together and share resources in a flexible and efficient
manner. However, care must be taken to design and implement IPC
systems carefully, in order to avoid potential security vulnerabilities and
performance issues.

https://www.geeksforgeeks.org/difference-between-cpu-and-gpu/

Interprocess Communication (IPC)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

• Conclusion
• A fundamental component of contemporary operating

systems, IPC allows processes to efficiently coordinate
operations, share resources, and communicate.

• IPC is beneficial for developing adaptable and effective
systems, despite its complexity and possible security
threats.

Interprocess Communication (IPC)

 Mechanism for processes to communicate and to synchronize their
actions.

 Message system – processes communicate with each other without
resorting to shared variables.

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate

fixed or variable?

 Is a link unidirectional or bi-directional?

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically.

 A link is associated with exactly one pair of communicating

processes.

 Between each pair there exists exactly one link.

 The link may be unidirectional, but is usually bi-

directional.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Indirect Communication
 Messages are directed and received from mailboxes (also

referred to as ports).

 Each mailbox has a unique id.

 Processes can communicate only if they share a mailbox.

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes.

 Each pair of processes may share several communication links.

 Link may be unidirectional or bi-directional.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Indirect Communication
 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A.

 P1, sends; P2 and P3 receive.

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes.

 Allow only one process at a time to execute a receive

operation.

 Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Synchronization

 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous

 Non-blocking is considered asynchronous

 send and receive primitives may be either blocking or

non-blocking.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Buffering

 Queue of messages attached to the link; implemented

in one of three ways.

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length

Sender never waits.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Client-Server Communication

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Sockets

 A socket is defined as an endpoint for communication.

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8

 Communication consists between a pair of sockets.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Socket Communication

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems.

 Stubs – client-side proxy for the actual procedure on

the server.

 The client-side stub locates the server and marshalls

the parameters.

 The server-side stub receives this message, unpacks the

marshalled parameters, and peforms the procedure on

the server.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Execution of RPC

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Remote Method Invocation
 Remote Method Invocation (RMI) is a Java mechanism

similar to RPCs.

 RMI allows a Java program on one machine to invoke a

method on a remote object.

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

Marshalling Parameters

Process / 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT1/30/2025

	Slide 1
	Slide 2: Syllabus
	Slide 3: Process Concept
	Slide 4: Process State
	Slide 5: Diagram of Process State
	Slide 6: Process Control Block (PCB)
	Slide 7: Process Control Block (PCB)
	Slide 8: CPU Switch From Process to Process
	Slide 9: Process Scheduling Queues
	Slide 10: Ready Queue And Various I/O Device Queues
	Slide 11: Representation of Process Scheduling
	Slide 12: Schedulers
	Slide 13: Addition of Medium Term Scheduling
	Slide 14: Schedulers (Cont.)
	Slide 15: Context Switch
	Slide 16: Process Creation
	Slide 17: Process Creation (Cont.)
	Slide 18: Processes Tree on a UNIX System
	Slide 19: Process Termination
	Slide 20: Cooperating Processes
	Slide 21: Producer-Consumer Problem
	Slide 22: Bounded-Buffer – Shared-Memory Solution
	Slide 23: Bounded-Buffer – Producer Process
	Slide 24: Bounded-Buffer – Consumer Process
	Slide 25: Producer-Consumer Problem
	Slide 26: Producer-Consumer Problem
	Slide 27: Producer-Consumer Problem
	Slide 28: Producer-Consumer Problem
	Slide 29: Producer-Consumer Problem
	Slide 30: Producer-Consumer Problem
	Slide 31: Producer-Consumer Problem
	Slide 32: Producer-Consumer Problem
	Slide 33: Producer-Consumer Problem
	Slide 34: Producer-Consumer Problem
	Slide 35: Producer-Consumer Problem
	Slide 36: Producer-Consumer Problem
	Slide 37: Interprocess Communication (IPC)
	Slide 38: Interprocess Communication (IPC)
	Slide 39: Interprocess Communication (IPC)
	Slide 40: Interprocess Communication (IPC)
	Slide 41: Interprocess Communication (IPC)
	Slide 42: Interprocess Communication (IPC)
	Slide 43: Interprocess Communication (IPC)
	Slide 44: Interprocess Communication (IPC)
	Slide 45: Interprocess Communication (IPC)
	Slide 46: Interprocess Communication (IPC)
	Slide 47: Interprocess Communication (IPC)
	Slide 48: Interprocess Communication (IPC)
	Slide 49: Interprocess Communication (IPC)
	Slide 50: Interprocess Communication (IPC)
	Slide 51: Implementation Questions
	Slide 52: Direct Communication
	Slide 53: Indirect Communication
	Slide 54: Indirect Communication
	Slide 55: Indirect Communication
	Slide 56: Synchronization
	Slide 57: Buffering
	Slide 58: Client-Server Communication
	Slide 59: Sockets
	Slide 60: Socket Communication
	Slide 61: Remote Procedure Calls
	Slide 62: Execution of RPC
	Slide 63: Remote Method Invocation
	Slide 64: Marshalling Parameters

