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Paging

 Logical address space of a process can be noncontiguous; process is allocated 

physical memory whenever the latter is available.

 Divide physical memory into fixed-sized blocks called frames (size is power of 

2, between 512 bytes and 8192 bytes).

 Divide logical memory into blocks of same size called pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free frames and load 

program.

 Set up a page table to translate logical to physical addresses. 

 Internal fragmentation.
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Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table 

which contains base address of each page in physical 

memory.

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit.

Operating System Concepts



Address Translation 

Architecture 
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Paging Example 
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Paging Example
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Free Frames
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Implementation of Page Table

 Page table is kept in main memory.

 Page-table base register (PTBR) points to the page table.

 Page-table length register (PRLR) indicates size of the page table.

 In this scheme every data/instruction access requires two memory 

accesses.  One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-aside 

buffers (TLBs)
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Associative Memory

 Associative memory – parallel search 

 Address translation (A´, A´´)

 If A´ is in associative register, get frame # out. 

 Otherwise get frame # from page table in memory
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Paging Hardware With TLB
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Effective Access Time

 Associative Lookup =  time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is 

found in the associative registers; ration related to 

number of associative registers.

 Hit ratio = 

 Effective Access Time (EAT)

  EAT = (1 + )  + (2 + )(1 – )

   = 2 +  – 
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Memory Protection

 Memory protection implemented by associating 

protection bit with each frame.

 Valid-invalid bit attached to each entry in the page 

table:

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page.

 “invalid” indicates that the page is not in the process’ 

logical address space.
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Valid (v) or Invalid (i) Bit In A Page Table
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Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables
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Hierarchical Page Tables

 Break up the logical address space into multiple page 

tables.

 A simple technique is a two-level page table.
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Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided 

into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided 
into:

 a 10-bit page number. 

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the 
displacement within the page of the outer page table.
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Two-Level Page-Table Scheme
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Address-Translation Scheme
 Address-translation scheme for a two-level 32-bit paging 

architecture
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Hashed Page Tables

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table. 

This page table contains a chain of elements hashing to 

the same location.

 Virtual page numbers are compared in this chain 

searching for a match. If a match is found, the 

corresponding physical frame is extracted.

Operating System Concepts



Hashed Page Table
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Inverted Page Table

 One entry for each real page of memory.

 Entry consists of the virtual address of the page stored 

in that real memory location, with information about 

the process that owns that page.

 Decreases memory needed to store each page table, but 

increases time needed to search the table when a page 

reference occurs.

 Use hash table to limit the search to one — or at most a 

few — page-table entries.
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Inverted Page Table 

Architecture
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Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems). 

 Shared code must appear in same location in the logical 

address space of all processes.

 Private code and data 

 Each process keeps a separate copy of the code and data.

 The pages for the private code and data can appear 

anywhere in the logical address space.
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Shared Pages Example
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Segmentation

 Memory-management scheme that supports user view of 
memory. 

 A program is a collection of segments.  A segment is a 
logical unit such as:

  main program,

  procedure, 

  function,

  method,

  object,

  local variables, global variables,

  common block,

  stack,

  symbol table, arrays
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User’s View of a Program
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Logical View of Segmentation

Operating System Concepts

1

3

2

4

1

4

2

3

user space physical memory space



Segmentation Architecture 

 Logical address consists of a two tuple:

  <segment-number, offset>,

 Segment table – maps two-dimensional physical 
addresses; each table entry has:

 base – contains the starting physical address where the 
segments reside in memory.

 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the 
segment table’s location in memory.

 Segment-table length register (STLR) indicates number 
of segments used by a program;

                   segment number s is legal if s < STLR.
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Segmentation Architecture 

(Cont.)

 Relocation.

 dynamic

 by segment table 

 Sharing.

 shared segments

 same segment number 

 Allocation.

 first fit/best fit

 external fragmentation
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Segmentation Architecture 

(Cont.)

 Protection.  With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing 

occurs at segment level.

 Since segments vary in length, memory allocation is a 

dynamic storage-allocation problem.

 A segmentation example is shown in the following 

diagram
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Segmentation Hardware
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Example of Segmentation
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Sharing of Segments
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Segmentation with Paging – 

MULTICS

 The MULTICS system solved problems of external 

fragmentation and lengthy search times by paging the 

segments.

 Solution differs from pure segmentation in that the 

segment-table entry contains not the base address of 

the segment, but rather the base address of a page 

table for this segment.
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MULTICS Address Translation 

Scheme
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Segmentation with Paging – 

Intel 386
 As shown in the following diagram, the Intel 386 uses 

segmentation with paging for memory management with a two-

level paging scheme.
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Intel 30386 Address 

Translation
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