
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23CST202 – Operating Systems
II YEAR - IV SEM

UNIT 3 – MEMORY MANAGEMENT

Syllabus

 UNIT I OVERVIEW AND PROCESS MANAGEMENT 9

 Introduction - Computer System Organization, Architecture, Operation, Process Management – Memory Management –

Storage Management – Operating System – Process concept – Process scheduling – Operations on processes – Cooperating

processes – Inter process communication. Threads - Multi-threading Models – Threading issues.

 UNIT II PROCESS SCHEDULING AND SYNCHRONIZATION 10

 CPU Scheduling - Scheduling criteria – Scheduling algorithms – Multiple-processor scheduling – Real time scheduling –

Algorithm Evaluation. Process Synchronization - The critical-section problem – Synchronization hardware – Semaphores –

Classical problems of synchronization. Deadlock - System model – Deadlock characterization – Methods for handling

deadlocks – Deadlock prevention – Deadlock avoidance – Deadlock detection – Recovery from deadlock.

 UNIT III MEMORY MANAGEMENT 9

 Memory Management - Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation

with paging. Virtual Memory - Background – Demand paging – Process creation – Page replacement – Allocation of frames

– Thrashing.

 UNIT IV FILE SYSTEMS 8

 File concept - Access methods – Directory structure – Files System Mounting – File Sharing – Protection. File System

Implementation - Directory implementation – Allocation methods – Free-space management.

 UNIT V I/O SYSTEMS 9

 I/O Systems - I/O Hardware – Application I/O interface – Kernel I/O subsystem – Streams – Performance. Mass-Storage

Structure: Disk scheduling – Disk management – Swap-space management – RAID – Disk attachment – Stable storage –

Tertiary storage. Case study: Implementation of Distributed File system in Cloud OS / Mobile OS.

 L :45 P:0 T: 45 PERIODS
Operating System Concepts

Paging

 Logical address space of a process can be noncontiguous; process is allocated

physical memory whenever the latter is available.

 Divide physical memory into fixed-sized blocks called frames (size is power of

2, between 512 bytes and 8192 bytes).

 Divide logical memory into blocks of same size called pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free frames and load

program.

 Set up a page table to translate logical to physical addresses.

 Internal fragmentation.

Operating System Concepts

Paging

 Logical address space of a process can be noncontiguous; process is

allocated physical memory whenever the latter is available.

 Divide physical memory into fixed-sized blocks called frames (size is

power of 2, between 512 bytes and 8192 bytes).

 Divide logical memory into blocks of same size called pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free frames and load

program.

 Set up a page table to translate logical to physical addresses.

 Internal fragmentation.

Operating System Concepts

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table

which contains base address of each page in physical

memory.

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit.

Operating System Concepts

Address Translation

Architecture

Operating System Concepts

Paging Example

Operating System Concepts

Paging Example

Operating System Concepts

Free Frames

Operating System ConceptsBefore allocation After allocation

Implementation of Page Table

 Page table is kept in main memory.

 Page-table base register (PTBR) points to the page table.

 Page-table length register (PRLR) indicates size of the page table.

 In this scheme every data/instruction access requires two memory

accesses. One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-aside

buffers (TLBs)

Operating System Concepts

Associative Memory

 Associative memory – parallel search

 Address translation (A´, A´´)

 If A´ is in associative register, get frame # out.

 Otherwise get frame # from page table in memory

Operating System Concepts

Page # Frame #

Paging Hardware With TLB

Operating System Concepts

Effective Access Time

 Associative Lookup =  time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to

number of associative registers.

 Hit ratio = 

 Effective Access Time (EAT)

 EAT = (1 + )  + (2 + )(1 – )

 = 2 +  – 

Operating System Concepts

Memory Protection

 Memory protection implemented by associating

protection bit with each frame.

 Valid-invalid bit attached to each entry in the page

table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page.

 “invalid” indicates that the page is not in the process’

logical address space.

Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

Operating System Concepts

Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Operating System Concepts

Hierarchical Page Tables

 Break up the logical address space into multiple page

tables.

 A simple technique is a two-level page table.

Operating System Concepts

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided

into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided
into:

 a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

Operating System Concepts

page number page offset

pi p2 d

10 10 12

Two-Level Page-Table Scheme

Operating System Concepts

Address-Translation Scheme
 Address-translation scheme for a two-level 32-bit paging

architecture

Operating System Concepts

Hashed Page Tables

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table.

This page table contains a chain of elements hashing to

the same location.

 Virtual page numbers are compared in this chain

searching for a match. If a match is found, the

corresponding physical frame is extracted.

Operating System Concepts

Hashed Page Table

Operating System Concepts

Inverted Page Table

 One entry for each real page of memory.

 Entry consists of the virtual address of the page stored

in that real memory location, with information about

the process that owns that page.

 Decreases memory needed to store each page table, but

increases time needed to search the table when a page

reference occurs.

 Use hash table to limit the search to one — or at most a

few — page-table entries.

Operating System Concepts

Inverted Page Table

Architecture

Operating System Concepts

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical

address space of all processes.

 Private code and data

 Each process keeps a separate copy of the code and data.

 The pages for the private code and data can appear

anywhere in the logical address space.

Operating System Concepts

Shared Pages Example

Operating System Concepts

Segmentation

 Memory-management scheme that supports user view of
memory.

 A program is a collection of segments. A segment is a
logical unit such as:

 main program,

 procedure,

 function,

 method,

 object,

 local variables, global variables,

 common block,

 stack,

 symbol table, arrays

Operating System Concepts

User’s View of a Program

Operating System Concepts

Logical View of Segmentation

Operating System Concepts

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

 Logical address consists of a two tuple:

 <segment-number, offset>,

 Segment table – maps two-dimensional physical
addresses; each table entry has:

 base – contains the starting physical address where the
segments reside in memory.

 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the
segment table’s location in memory.

 Segment-table length register (STLR) indicates number
of segments used by a program;

 segment number s is legal if s < STLR.

Operating System Concepts

Segmentation Architecture

(Cont.)

 Relocation.

 dynamic

 by segment table

 Sharing.

 shared segments

 same segment number

 Allocation.

 first fit/best fit

 external fragmentation

Operating System Concepts

Segmentation Architecture

(Cont.)

 Protection. With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level.

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem.

 A segmentation example is shown in the following

diagram

Operating System Concepts

Segmentation Hardware

Operating System Concepts

Example of Segmentation

Operating System Concepts

Sharing of Segments

Operating System Concepts

Segmentation with Paging –

MULTICS

 The MULTICS system solved problems of external

fragmentation and lengthy search times by paging the

segments.

 Solution differs from pure segmentation in that the

segment-table entry contains not the base address of

the segment, but rather the base address of a page

table for this segment.

Operating System Concepts

MULTICS Address Translation

Scheme

Operating System Concepts

Segmentation with Paging –

Intel 386
 As shown in the following diagram, the Intel 386 uses

segmentation with paging for memory management with a two-

level paging scheme.

Operating System Concepts

Intel 30386 Address

Translation

Operating System Concepts

	Slide 1
	Slide 2: Syllabus
	Slide 3: Paging
	Slide 4: Paging
	Slide 5: Address Translation Scheme
	Slide 6: Address Translation Architecture
	Slide 7: Paging Example
	Slide 8: Paging Example
	Slide 9: Free Frames
	Slide 10: Implementation of Page Table
	Slide 11: Associative Memory
	Slide 12: Paging Hardware With TLB
	Slide 13: Effective Access Time
	Slide 14: Memory Protection
	Slide 15: Valid (v) or Invalid (i) Bit In A Page Table
	Slide 16: Page Table Structure
	Slide 17: Hierarchical Page Tables
	Slide 18: Two-Level Paging Example
	Slide 19: Two-Level Page-Table Scheme
	Slide 20: Address-Translation Scheme
	Slide 21: Hashed Page Tables
	Slide 22: Hashed Page Table
	Slide 23: Inverted Page Table
	Slide 24: Inverted Page Table Architecture
	Slide 25: Shared Pages
	Slide 26: Shared Pages Example
	Slide 27: Segmentation
	Slide 28: User’s View of a Program
	Slide 29: Logical View of Segmentation
	Slide 30: Segmentation Architecture
	Slide 31: Segmentation Architecture (Cont.)
	Slide 32: Segmentation Architecture (Cont.)
	Slide 33: Segmentation Hardware
	Slide 34: Example of Segmentation
	Slide 35: Sharing of Segments
	Slide 36: Segmentation with Paging – MULTICS
	Slide 37: MULTICS Address Translation Scheme
	Slide 38: Segmentation with Paging – Intel 386
	Slide 39: Intel 30386 Address Translation

